
Xconq

The Penultimate Strategy Game

Version 7.0

March 1995

Stanley T. Shebs

Copyright
c

 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995 Stanley T. Shebs

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the conditions

for verbatim copying, provided also that the section entitled \GNU General Public License" is

included exactly as in the original, and provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modi�ed versions, except that the section entitled \GNU General

Public License", and this permission notice, may be included in translations approved by the Free

Software Foundation instead of in the original English.

Chapter 1: Xconq, the Penultimate Strategy GameXconq 1

1 Xconq, the Penultimate Strategy Game

Welcome to Xconq!

Xconq is a powerful multi-player game system. With Xconq you can build empires, �ght wars,

relive history, and adventure across fantastic worlds. You can play computerized board games, or

be Godzilla rampaging through Tokyo.

Xconq runs on many computer systems. It features several di�erent user interfaces, includ-

ing ones based on Unix(tm) terminal graphics (\curses"), the X Window System, and the Apple

Macintosh(tm). Although all share the same basic design, the \look and feel" of each interface

matches the system you're on. The details of a particular Xconq game depend heavily on its game

design, which de�nes the pieces in the game and its rules of play. So, to understand everything

about a game you're playing, you need three sources of information: this manual, which covers all

general information; documentation for the user interface; and documentation for the game design

in e�ect. Although this sounds like a lot, most games don't use every feature of Xconq, and the

user interfaces will usually o�er plenty of online guidance.

1.1 About This Manual

The remainder of this chapter discusses compatibility with older versions of Xconq, and addi-

tional information resources.

Chapter 2, \Playing Xconq" is the player's guide. It describes the general concepts shared by

all the Xconq games.

Chapter 3, \Designing Games with Xconq" is a designer's guide for building and modifying

Xconq game designs, using both Game Design Language (GDL) and online editing tools.

Chapter 4, \Reference Manual" is the complete de�nition of GDL. It includes the syntax and

semantics of all parts of the language.

Chapter 5, \Hacking Xconq" describes the general architecture of Xconq, and how to extend

the basic program. This chapter also includes a rationale for the major design decisions, and some

ideas for future development.

4 May 1995DRAFT d35 DRAFT d35

Chapter 1: Xconq, the Penultimate Strategy GameXconq 2

1.2 Compatibility

Xconq version 7 is not directly compatible with previous versions, although most of the basic

game concepts remain unchanged. If you've played Xconq before, you should have little trouble

getting used to the di�erences.

If you've designed any games (periods, maps, or scenarios) for version 5, you will discover many

changes. Version 5 of Xconq used a mix of crude �xed-format syntax and a simple post�x language

for game designs (which were then called \periods"). This version has changed too radically to be

able to read any of the old period, map, or scenario �les. For instance, version 7 eliminates the

distinctions between \period", \map", and \scenario". Therefore, if you have old Xconq �les, you

should invest the time to convert. You may even discover that some of the new features of Xconq

provide a better solution to your design problems. (The shell scripts per2game, map2game, and

scn2game will help you get started on conversion; you can �nd them in the misc directory.)

1.3 Where to Get Game Designs

Xconq is not useful without game designs. The library distributed with Xconq includes many

designs, some inherited from previous releases and others that are entirely new.

You are encouraged both to modify any of the existing game designs and to develop your own.

Chapter 3, \Designing Games with Xconq", includes a comprehensive tutorial on how to do this.

The version 7 game design language (GDL) is better-designed and more robust than the machinery

in version 5, so if you've been discouraged by mysterious problems before, you might want to try

designing with version 7 instead.

1.4 For More Information

The ftp server ftp.cygnus.com usually has the latest version of Xconq, as well as other con-

tributed material, in the directory pub/xconq. Other servers also have copies of Xconq. See your

local Internet wizard, or buy one of the many excellent Internet guides if this isn't enough infor-

mation for you.

4 May 1995DRAFT d35 DRAFT d35

Chapter 1: Xconq, the Penultimate Strategy GameXconq 3

1.5 Acknowledgments

Since the �rst release of Xconq in 1987, it has bene�ted from the work and ideas of literally

hundreds of people, �rst at the University of Utah, then worldwide.

Special thanks must go to Eric Muehle, a tireless source of ideas, advice, and playtesting at

Utah; Greg Fisher, who added many good things to make 5.4; and Robert Forsman, who did a

great deal of work for 5.5. Eric Ziegast and Alan Clegg have been essential to maintaining the

Xconq mailing list and archives.

Massimo Campostrini contributed the printing code, xshowimf, and a number of library modules,

as well as many other �xes and enhancements.

Other contributors have been (in alphabetical order): Jim Anderson, Ed Boston, Mark Bradakis,

Alain Brossard, Richard Buonanno, Germano Caronni, Harold Carr, Ben Chase, Chris Christensen,

Kevin Deford, Dan Dickey, Fred Douglis, Miles Duke, Barry Eynon, David Harr, Scott Herod,

Eiji(\A.J.") Hirai, Kurt Hoyt, Je� Kelley, Bob Kessler, Jed Krohnfeldt, Rick Ledoux, Brian Lewis,

Sandra Loosemore, Michael Lounsbery, Steve McInerney, Eric Mehlha�, Jimmy Miklavcic, Tim

Moore, Scott Mueller, Julian Onions, Dave Pare, Stephen Peters, Chris Peterson, Mohammad

Pourheidari, Dan Reading, Tom Richards, Joel Rives, Jay Scott, John Shovic, Josh Siegel, Leigh

Stoller, Ravi Subrahmanyam, Cimarron Taylor, Spencer Thomas, John Tonry, Rich van Gaasbeeck,

Henry Ware, Grant Weiler, Je� Young, and many others.

Thanks also to the University of Utah, Apple Computer, Inc., and Cygnus Support, who have

all contributed machine resources that helped in the development of Xconq.

4 May 1995DRAFT d35 DRAFT d35

Chapter 1: Xconq, the Penultimate Strategy GameXconq 4

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 5

2 PlayingXconq

This chapter is about how to play Xconq. Although Xconq supports a wide variety of games, and

runs on many di�erent computer systems, they all have much in common, and it is these common

features that will be described here. This chapter, along with the document for your system and

the document for the game you're playing, should provide all the information you need to play and

enjoy Xconq.

The term interface refers to the particular graphical user interface in use. Examples include

X11, curses, and Macintosh. Interfaces can vary radically from each other, since each is designed

to be best suited for its environment. In practice though, interfaces will tend to share the same

commands, so that you don't learn to learn a whole new set when switching computers.

When reading this chapter, you should be aware that the term game is more precisely game

design, since it is the set of rules and de�nitions of the game you want to play. Since Xconq allows

for many di�erent kinds of games designs, much of the information in this chapter will be irrelevant

to a particular game. This will be indicated by phrases like \some games" or by saying that a

game \may" implement some concept or behavior. You should learn what the game you're playing

actually does in these cases. The names of the variables or tables to look at will often be mentioned

in computer type.

2.1 Setting Up A Game

To get started with Xconq, you have to select which game you want to play. The possibilities

may be presented to you, or you may have to look in some sort of library to see what's available and

then supply that name on a command line. If you don't do anything, then you will get a default

game.

Some games require no additional setup; once loaded, you're ready to go. Others will require

additional decisions, such as the size and shape of the playing area, whether exploration will be

necessary, or whether the game is realtime. These will all be called variants. The exact set of

variants is determined by the game design, and the interface will (usually) tell you about them.

In addition, most games also give you a choice of which player is to play which side in a game,

as well how many players can join in. There are two kinds of players: humans, who have displays,

and arti�cial intelligences or AIs for short, which are run by the computer. Some versions of Xconq

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 6

may include more than one kind of AI; each type has a distinct name. The AI named mplayer is

always available.

An example might be a simulation of Europe ca 1900, named "la-belle-epoque", in which the

sides might be \England", \France", \Germany", and \Austria-Hungary", and the players might

be Joe on a Sun-4, Natalie on a Mac, and two of the mplayer AIs. You can set Natalie to play

England, Joe to play Germany, and the two AIs to play France and Austria-Hungary.

Some game designs provide a way to even things up if the players are of vastly di�ering abilities.

In these designs, each player has an advantage that a�ects how much he or she gets to start

with. Weaker players should get a higher advantage, so for instance a game with two players, of

advantages 1 and 4, might give the advantage=4 player 8 cities while the advantage=1 player gets

only 2. This a�ects setup only; during the game all players are equal. The variability of advantage

also depends on the game; some may allows di�erences of 10 to 1 or more, while others, especially

historically accurate scenarios, will have a �xed advantage that the designer has set for each side.

Once a trial player setup has been made, Xconq runs \synthesis methods". These methods

are speci�ed by the game design, and randomly generate anything that was not explicitly spelled

out; for instance, the initial location of countries, terrain features, and so forth. As a player, you

don't have to concern yourself about synthesis methods, but you should be aware that you may

sometimes run into situations were a synthesis method simply cannot cope, and your game setup

will fail. A common case is where you ask for many players to be set up in a small world, and

the set of constraints is too \tight" for an initial setup to succeed. In such cases, you just have to

try di�erent setups and maybe complain to the game designer. Synthesis methods may also take a

long time to run; for large worlds and lots of players, be prepared to wait.

When initialization and setup succeeds, Xconq will try to open up displays for every player that

wanted one. Exactly how this happens depends on the interface and networking capabilities of the

version of Xconq you're using. Once this is done, Xconq will start the game for real.

You may also get a warning that \images were not found". This happens when the game design

speci�es the use of particular icons or patterns (collectively call images here), but they cannot be

found anywhere by Xconq. This is not fatal, because Xconq will use generic default images instead,

but the display may be hard to understand. There are several possible reasons for images not to be

found: 1) the game designer might have speci�ed the use of particular images, but never de�ned

them, 2) the library of images was not updated to include the needed images, or 3) the image

library is not located where Xconq is looking.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 7

2.2 Starting Play

What you'll �rst see depends entirely on the interface you're using. Typically there will be a

map and a list of sides, possibly other displays as well. Help is available in the \usual" ways, and

the interface is robust, so you can always just try to �nd your way around by experimentation.

(This is best done by yourself, rather than in a game with a lot of other people.)

The game proceeds as a sequence of turns. During each turn, you and the other players get

to move your units, which can be anything from cities to submarines to insects, depending on the

game. In addition, there may be backdrop activities, such as changing seasons and weather, that

go on all by themselves. These typically happen at the beginning or end of a turn, not while players

are moving their units.

Your exact goal in the game depends on the scorekeepers. Most games have at least one, some

have several, and some have none. There are many kinds of scorekeepers, so be sure you know and

understand what they are before getting too far into a game! If there are no scorekeepers at all,

you can do whatever you like; any AIs playing in such a game will behave quite randomly.

A game may last anywhere from a few turns to many hundreds. Again, this may be limited by

the game design, or perhaps by the nature of the game. For instance, a game of oil empires might

be forced to end when the world's oil supplies are exhausted...

2.3 Worlds and Areas

Gallia est omnis divisa in partes tres [All Gaul is divided into three parts] { JULIUS

CAESAR

The Xconq \world" is always a sphere. However, you only play on a piece of its surface, which

is called an area. Currently, there can only be one world and one area in a game; this may change

in a future version of Xconq.

An area is divided into a grid pattern of cells. Although squares with four or eight neighbors

could be used (and were, in the very �rst version of Xconq), currently only a hexagon grid is

available. Each cell is therefore adjacent to six others, in the directions NW, NE, W, E, SW, and

SE. Areas have a width and height that are the number of cells across and up/down. Although

you can ask for areas down to 10x10 or less, or up to 1000x1000 or even more, the ideal default

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 8

is typically around 60x30. Larger areas consume vast quantities of memory, plus they're slow and

unwieldy to play on.

If the area's width matches the circumference of the world, it is a cylinder in shape. The cylinder

can be circumnavigated in an east-west direction. This is what an 8x6 cylinder area might look

like (periods are sea, + and ^ are land, # indicates edge cells):

#

. . + +

. . . + ^ . . .

.

. . . . ^ . . .

#

Areas whose width is less than the world's circumference have a hexagonal shape. This is an

8x7 hexagon:

#

. + + .

. . + ^ .

. . + ^ . .

.

. . ^ .

#

The top and bottom rows of the cylinder shape, and all the sides of the hexagon shape, although

they are displayed, may not be entered (except when leaving the world entirely, which some games

allow). These cells are called edge cells.

The types of terrain you'll �nd in the world depends on the game design; typically there will

be sea, land, mountains, swamp, and so forth, but more exotic games have been known to feature

junkheaps, lava, and black holes as \terrain".

Terrain can cover an entire cell, be linear features passing through or between cells, or be a

coating overlaying other terrain. Cell terrain covers the entire cell uniformly, right out to its edges.

A border is the boundary between two adjacent cells; it has a distinct terrain type, such as

\river" or \beach". A connection is a narrow ribbon of terrain that reaches from the middle

of one cell to the middle of an adjacent cell. Like borders, connections are distinct types, for

instance \road", \railway", or \canal". Connections take precedence over borders and underlying

cell terrain; in other words, if cell or border terrain is impassable, but there is a passable connection

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 9

type, then the connection allows passage. Thus a connection can be usable as a bridge. You may

also �nd more than one type of connection or border, between two cells, such as both a road and

a rail line.

A coating is like snow; it is a type that co-exists with cell terrain. Coatings can change from

turn to turn, varying in depth.

Note that any single terrain type can only play one of these roles. This means you will never

have river terrain that is both border and connection, nor will snow be both a coating and a cell

type.

In some games, each cell has an elevation, which is basically elevation above sea level, but could

be any range of values, as set by the game design. The game design also de�nes the e�ect of

elevation on movement, visibility, weather, and so forth.

A world can have named geographical features or just features, such as a bay, mountain, desert,

or valley. Geographical features never have any direct e�ect on your game, but some interfaces

may label features when drawing a map, or use them to help describe locations verbally, in phrases

like "1 hex NW of Broken Hill".

A world can have people living in some or all of its cells. People belonging to a side report

everything they see in their cell to their side. Some types of units will change the people's side to

the unit's, if that unit is of the proper type, such as an occupying army.

2.4 Units

Units can be almost anything: adventurers, armies, balloons, bicycles, dragons, triremes, spiders,

battleships, bridges, headquarters, cities. Units move around, manufacture things, �ght with other

units, and possibly die. They are the playing pieces of Xconq.

Units have a location, either in out in the open terrain of a cell, or inside some other unit. In

games that de�ne connections, a unit may be on the connection rather than on the predominant

terrain of the cell. (Think of a truck on a bridge.) There may be more than one unit in the open

in a given cell, up to a game-de�ned limit. The collection of units sharing a cell is called a stack.

A unit inside another unit will be called an occupant in a transport, even if the \transport" is a

type that can never move.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 10

A unit's location may also include an altitude, expressed as its distance above the surface of the

cell it is in.

A unit either belongs to a side, or else it is considered independent. Independent units do not

do very much. In more complex games, the unit's side merely represents the current ownership,

and the unit may have a range of feelings towards each side, including its current one. In those

games, it is possible for one of your units to be a traitor!

Units can have a name, full name, a title, and a number, as appropriate to the situation.

The name is an ordinary name like \Joe Schmoe" or \Cincinnati", while the full name might be

something like \Joseph P. Schmoe". The title is a form of address such as \Lord". The unit

number, if used, is an ordinal that is maintained for each side and each unit type, so you can have

both a \1st national bank" and a \45th infantry division" on your side. Names and numbers are

always optional, and can usually be changed at any time during the game.

Every unit starts out with a number of hit points or hp representing how much damage it can

sustain before dying. Certain types of units, such as armies and
eet of ships, have multiple parts,

which means that damage to them reduces their e�ective size. Multi-part units can merge with and

detach from each other. Damaged units may recover their hp on their own, or else be repairable

by explicit action, either by themselves or by another units (ships in port for example).

In addition to occupants, a unit can also carry supplies (food, fuel, treasure, etc), which are

type of materials (see the next section). Supplies are used up by movement, combat, and by just

existing, and are gotten either by producing them or by transferring them from some other unit.

Some games start units out with lots of supplies, while in others you have to acquire them on your

own.

What a unit can do at any one time depends on the action points or acp available to it. Each

sort of action - movement, construction, repair, etc - uses up at least one action point, and possibly

more. A unit with an acp of 0 can never do anything on its own, although other units can still

manipulate it. Also, not every type of unit can do every type of action; this is also de�ned by the

game design. Section xxx lists all the types of actions that are possible in Xconq.

[explain cxp, when it's implemented]

You can lose a unit in many di�erent ways: in combat, by running out of essential supplies, by

being captured, by revolt, by garrisoning a captured unit, by leaving the world, or in accidents.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 11

2.5 Materials

In Xconq, materials are basically bulk inanimate stu�s, like food or fuel. They are kept in units

or in cells, up to limits de�ned by the game. Materials may be provided as part of the initial

game setup, or else produced by units and cells. They are consumed by construction, movement,

or merely in order to survive. You can also move materials around from unit to unit. Some games

de�ne laws of supply and demand, which will move materials for you, though not necessarily in the

directions you would prefer!

In a few games, possession of a material type may �gure into your score (your gold in a medieval

game, for instance). In other games, there are no types of materials at all.

2.6 Sides

Each player in Xconq runs a side. The concept of \side" is somewhat abstract in Xconq; units

in a game belong to sides, but the sides themselves are not attached to any particular unit. Side

often represent countries, but not invariably.

It is important to be clear about sides and players. A side is a part of the simulated world,

while a player is the actual real-world person or program that is playing the side. You yourself are

always the player, but in one game you may play the German side, and in another the Klingon

side. During a game, there will always be a player for each side, and vice versa. The distinction is

most important during setup, since you can swap players between sides.

Each side can have a name and associated parts of speech, such as a noun for individuals on the

side and an adjective to describe anything belonging to the side. [example?] Sides can also have

emblems and colors that are used in displays. Some game designs preset all this, while others let

you personalize as desired. See the Xconq document for your system to learn how to do this.

2.6.1 Interaction Between Sides

In games with two players, your interaction is usually pretty simple, i.e. bash on each other.

In games with many players, some human, some mechanical, it is possible to have a variety of

relationships, ranging from complete trust to complete hatred.

One thing you can do is to make your side be controlled by another side. This is basically

surrendering, because the controlling side can manipulate any of your units as if they were its own.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 12

The controlling side also has the option of allowing or forbidding you to move your own units.

The relationship is strictly one-sided, and only the controlling side can release the controlled side.

(Note that this is a way to have several people play on a side; have one player run the controlling

side and be helped by several other players running controlled sides, usually with agreed-upon

responsibilities.)

A less extreme, but still very close, relationship is trust. This is like a close ally - you can enter

each other's transports, you share view data, and so forth. Trust is a two-way relationship; both

you and the other side each have to declare you want to trust the other. You can do this at any

time. You can also, unilaterally, withdraw your trust in another side at any time.

2.6.2 Agreements

Diplomacy is to do and say // The nastiest thing in the nicest way. { ISAAC GOLD-

BERG (1938)

If you don't want to declare a special relationship with another side, but still want to make some

sort of adhoc arrangement, you can create an agreement. An agreement is a sort of generalized

treaty; it consists of a number of terms agreed to by a number of signers, which are sides. Agree-

ments may be public or secret, and you can declare them to be enforced by Xconq if the terms are

in a form it understands. An agreement that just says \help each other out" cannot be evaluated

by the computer!

To make an agreement, you tell the interface to create one, �ll in its terms, possibly give it a

name, make up a list of proposed signers, then either propose it directly or else send to drafters,

which are the side you want to help with the composition of the agreement. The draft also includes

the list of sides that will know about the agreement.

When the agreement is o�cially proposed, it will be displayed to all sides that are to sign, and

represented as coming from the sides listed as proposers. Xconq will then ask each proposed signer

to sign; if all do so, then the agreement goes into e�ect immediately. All sides that are to know

about the agreement will be informed of its terms.

Some interfaces may allow players to copy and modify a proposed and circulate it along with the

original. The proposing side may also withdraw a proposal, but cannot modify it without having

it signed again by everybody involved.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 13

Once in e�ect, an agreement cannot be modi�ed, and it cannot be removed unless it includes a

term that provides for this.

An agreement can have any number of terms. Each term can have one of several forms:

A text string. This is not interpreted in any way and could be a comment, preamble, or whatever.

A true/false expression. This must always be true for the agreement to be valid.

A statement of an action. This action will be performed at the instant that the agreement goes

into e�ect.

An if-then statement. If the condition is true while the agreement is in e�ect, then the action

will be performed.

[need some examples]

Note that the drafter/proposer/signer distinction has many uses; for instance, you can draft an

agreement to be proposed by a coalition of sides, but the proposed signers are neutral sides that

you want to keep quiet.

2.6.3 Trade

You can specify the nature of the trading relationship with other sides. The basic theory is that

traders are businessfolk and don't care much about politics; they will do business with anybody.

However, a player can de�ne relationships with other sides via tari�s. A tari� is a per-side per-

material percentage that will be taken from any transfer from/to units on one side to units on

another side. You can de�ne both import and export tari�s. A tari� of zero means free trade, and

negative tari�s are allowed; in such cases your stock of material is used to add to the transfer.

2.6.4 Tech Levels

In some game designs, technology and research are important. These games give each side a

set of tech levels (or just tech for short), one for each type of unit. The tech level represents the

technological knowledge needed to see, operate and build a type of unit. Tech levels never decrease

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 14

(they may in real life, but only over very long time intervals), and they can be increased by research

and espionage.

There are several tech thresholds for a unit. First there is tech-to-see, below which you will

not even be aware of the existence of a unit (consider barbarians unable to see spy satellites passing

overhead). Then there is tech-to-use, which you must have in order to make the unit do any

actions. The tech-to-understand and tech-on-acquisition are points at which your side can

increase its tech level just by owning a unit, and �nally the tech-to-build is what you must have

to create new units of the given type.

See below to �nd out how you can do research and espionage to increase your tech level.

2.6.5 Side Classes

In some games, several sides may be very similar, while being very di�erent from other sides in

the same game. These similar sides can be given the same side class. Units may then be restricted

to be usable only by the sides in a particular class. (Note that this is di�erent from tech level,

which allows units to be used by any side that has managed to acquire a su�cient tech level.)

2.6.6 Self-Units

A self-unit is one that represents your whole side in some way. For instance, in a dungeon

exploration game, your \side" might consist of an adventurer (you), your possessions, your followers,

and perhaps more. In such a case, if the adventurer dies or is captured, then the game should be

over, at least for you.

Usually the self-unit will be set up by the game design, and all you have to do is to be aware that

losing the self-unit ends your participation instantly. Some games might have \self-unit resurrec-

tion" which just means that if another unit is available when the self-unit dies, then that another

unit becomes your new self-unit. This is like where admirals would leave their sinking
agship and

board another ship, thus \transferring the
ag". (Admirals presumably being more valuable than

captains, who're supposed go down with their ships!) Some games may also allow you to change

self-units manually.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 15

2.7 Moving the Units

Once the �rst turn begins, you can begin looking at the display and moving your units. De-

pending on the game design and startup options, you may or may not be moving simultaneously

with the other players. If not, then the players move one at a time, in the order that their sides are

listed in any display. Usually, you can choose freely which units to move next; you can move one

a bit, switch to another, move it, then come back to the �rst one later, and so forth. Some game

designs may require that you move units in a speci�c order; perhaps all your aircraft must �nish

all their movement before any ships can move.

2.7.1 Turn Setup

First, Xconq computes the number of action points available to each unit. Each unit gets an

increment of action points equal to its acp-per-turn. Actions during a turn reduce this down;

when it reaches a value less than the cost of any action, the unit cannot do anything more until

the next turn.

The range of action points for a unit is normally 0 up to the value of acp-per-turn, but the

parameters acp-min and acp-max may allow for an extended range. You use this range by allowing

a unit to accumulate extra action points by doing nothing for several turns, or to recover from

an activity that used many action points all at once. Think of this as a sort of temporary action

\debt". Units in debt at the beginning of a turn cannot act during that turn.

2.7.2 Types of Actions

Actions are the most basic kinds of things your units can do. During play, the interface will

usually give you capabilities that are easy to use, such as the ability to point at a destination and

have the unit �gure out which path to take to get there, but all such input eventually breaks down

into sequences of actions. You will therefore �nd it useful to understand all the types of actions

available.

Movement Group:

� Move to a given location. The unit being moved may be in a transport or out in the open, the

destination is any location in the open (this will usually, but not always, be an adjacent cell),

and may be at any altitude allowed for the unit.

� Enter a given transport unit. The transport need not be on the same side as the entering unit.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 16

Combat Group:

� Attack a given unit. A successful attack causes damage and destruction to the unit being

attacked.

� Overrun a given location. The overrunning unit attempts to occupy the destination, capturing,

ejecting, or eliminating any unfriendly unit present.

� Fire at a given unit, possibly using a given material as ammunition.

� Fire into a given location, possibly using a given material as ammunition.

� Capture a given unit.

� Detonate at a given location. Detonation causes damage to all unprotected units in the vicinity

of the detonation.

Construction Group:

� Research a given unit type. This increases the tech level for the type being researched.

� Tool up to build a given unit type.

� Create a unit of the given type. The unit will usually be incomplete.

� Build a given unit towards completion.

� Repair a given unit, restoring lost hp.

Unit Manipulation Group:

� Disband a given unit, causing it to disappear.

� Transfer part of a unit, either to another given unit, or creating a new unit.

� Change side of a given unit to a given side.

� Change type of a given unit to a given type.

Material Manipulation Group:

� Produce a given quantity of a given material type.

� Transfer a quantity of a given material type to a given unit.

Terrain Manipulation Group:

� Add terrain of a given type to a given location.

� Remove terrain of a given type from a given location.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 17

Normally, you as the player and the side simply tell units to perform these actions themselves.

However, some games will allow the unit to cause the action to done as if another unit were doing

the action. For instance, a transport can pick up or drop o� a non-moving unit.

Not all interfaces can be guaranteed to allow the most general forms of all these actions; you

must consult the interface's documentation to �nd out which of these actions is available.

2.7.3 Movement

Movement into a cell is easy to request, but each game will have many rules constraining possible

moves, depending both on the unit and the terrain it is moving over. Certain kinds of terrain cost

extra points to enter, leave, or cross. The destination must almost always be adjacent to the unit's

current location.

The other kind of action is to enter/leave a transport. The only argument is the unit to enter,

but again the constraints are complicated. The transport must have su�cient space, both the

entering unit and the transport must have su�cient mp and acp to complete the move, and the

entering unit must be able to cross the intervening terrain. The transport may be able to ferry

the would-be occupant over any barriers; possibilities include no ferrying, ferrying only over the

transport's terrain, ferrying over any borders, and ferrying over all terrain between the would-be

occupant and the transport.

In some games, you may be able to make one of your units leave the world entirely. Sometimes

this will seem like a good idea, perhaps to keep a trapped unit from falling into enemy hands, or

because you win the game by leaving through a designated place. To do this, you just direct your

unit (which must already be at the edge of the world) to move into one of the cells along the edge.

If the departure is allowed, then the unit will simply vanish and be out of the game permanently.

In other games, you may be able to do a border slide. This is where a unit can jump to a

non-adjacent cell if the two cells have a border whose endpoints touch the starting and ending cell.

This is typically allowed in games so that ships can go through narrow straits.

2.7.4 Combat

War is a matter of vital importance to the State; the province of life or death; the road

to survival or ruin. It is mandatory that it be thoroughly studied. { SUN TZU (ca 400

BC)

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 18

There are two basic kinds of combat, each with two versions. A unit can attack or overrun,

meaning that it comes to grips with an enemy in some way, or it can �re, meaning that it keeps its

position and throws rocks or whatever at a target.

Attack is directed at a particular unit, while overrun is a more complex action where the unit

attempts to clear enough units from a given location so that it can move in.

A unit wishing to attack picks a position or unit to attack, Xconq computes the defender's

response, then the outcome is computed.

In many games, that will be the end of a �ght. In others, the units remain engaged in a battle,

and they cannot do any other type of action until they have disengaged completely.

Firing can happen at long ranges, up to the range of a unit. It may or may not involve using

a speci�c material as ammunition; if the game gives you a choice, you will have to choose which,

or else all possible types will be used. You can �re at a speci�c unit if you can see it, otherwise

you will have to �re into a cell; perhaps without knowing whether or not you're actually hitting

anything in it.

Some units are capable of capturing other units, with a probability depending on the types of

both units involved. If the capture attempt is successful, the capturer will move into the cell if

possible, either as occupant or transport. In some games, the capturer may be all or partially

disbanded, to serve as guards. Capture may also occur as a side e�ect of a normal attack.

Detonation is a special kind of \combat" available to some units. The action requires a location

- either the unit's position or a nearby cell. Upon detonation, the detonating unit may lose some

hp and even die (changing to its \wrecked type", if de�ned, or else vanishing). At the same

time, it makes one hit on any units within its radius of e�ect. Detonation may also be triggered

automatically, such as by damage to the unit or even by another unit appearing nearby.

2.7.5 Research

Knowledge is power. { FRANCIS BACON (1597)

Research increases a side's tech for the unit type being researched. Although you can only

research a speci�c type of unit, some game designs allow for a crossover e�ect, where increases in

the tech level for one type also increases the level in others.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 19

You can have more than one researcher researching the same type, and thereby speed up your

progress, but some games put a ceiling (tech-per-turn) on how much progress you can make in

one turn.

2.7.6 Construction

We must be the great arsenal of democracy. { FRANKLIN ROOSEVELT (1940)

Tooling up prepares a unit to create or construct the desired type. As with research, game

designs may allow a crossover e�ect for tooling. Tooling may also decline gradually over time; this

is called tooling attrition.

Actual construction of a unit happens in two steps; creation and building towards completion.

Most interfaces will also schedule research and toolup actions if a unit is told to build something

that needs tech or tooling �rst.

Creation is the actual step of bringing a new unit into existence. If the new unit is complete,

then it can be used immediately. If not (the usual case), then the incomplete unit will exist and

belong to your side, but be unable to do anything at all. Incomplete transports cannot have any

occupants, unless they are types capable of helping complete the transport.

Completion is achieved by doing build actions on the unit. Multiple units can all work on

completing the same unit, but they must be su�ciently close, within a range de�ned by the game

(usually the same or an adjacent cell). In some games, there is a level of completion past which

the unit will start working on itself automatically, and eventually become complete without any

further action.

It is usually the case that the same unit will be able to both create and complete a unit, but

if not, you will have to pay special attention to your construction plan, since an incomplete unit

cannot act in any way.

Note that multi-part units will be considered \complete" when just one of their parts is com-

pleted. Most interfaces will have the builder continue growing the just-completed unit as long as

it remains within construction range.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 20

2.7.7 Repair

Repair restores lost hit points to a unit. Repairs can be done by the damaged unit itself, if it is

not too badly damaged, or by another unit that is close enough.

Some games also feature automatic hit point recovery, so you don't always have to remember

to do explicit repair actions.

2.7.8 Disbanding

Disbanding is a voluntary loss of hp, ultimately resulting in the disappearance of the unit. Most

games only allow it for a few types of units. Depending on the game, you may be able to disband

the unit in one turn, or you may need several turns before the unit actually goes away.

Units with occupants can disband, but only if the occupants are una�ected by the action. If the

unit would vanish or lose transport capacity, then the occupants must be disbanded or removed

�rst. The interface may arrange to do this for you automatically.

You always get back all of the disbanded unit's supplies, and they will be distributed to other

units nearby. In addition, the disbanded unit itself may become a source of materials. A percentage

of the total material will become available after each action, if disbanding takes several turns to

accomplish.

2.7.9 Transferring Parts

In games where units can vary in size, you can shift one or more parts of a multi-part unit to

another unit, or else create an entirely new unit.

You would use this action if, for instance, you wanted to detach a survey party from an exploring

expedition, then rejoin later.

2.7.10 Changing Side

In many games, you can give some of your units to another side. You may also be able to take

them from another side, if you control that side.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 21

Unlike most actions, you may be able to cause a unit to change side without actually expending

any action points, if the game de�nition allows.

2.7.11 Changing Type

A few games allow you to change the type of a unit.

For instance, you might have this ability in a construction-oriented game, where you can take a

town that has accumulated su�cient building materials and change it into a city. Another possibility

is that you have increased your technology level and are now able to transform a low-tech ship into

a higher-tech ship.

2.7.12 Producing Materials

Production is how a unit can produce a quantity of a material.

In many games, units already have a base production that is the amount of material that they

produce automatically each turn. This will often depend on the terrain, so that explorers in the

forest will always \produce" enough water to drink each turn, but will start to use up their water

supply when in the desert.

2.7.13 Transferring Materials

Often there will be plenty of some type of material in the world, but the problem is getting it

from the units that have a lot, to the units that need it badly. The transfer action is how you move

supply from one unit to another.

As with production, many games have some automatic transfers set up. For instance, games

involving aircraft generally refuel them automatically whenever the aircraft has landed in a place

with fuel to spare.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 22

2.7.14 Changing the Terrain

In some games, units can add or remove borders, connections, or coatings, or may even be able

to change the overall type of terrain in a cell. The actions are add-terrain, remove-terrain, and

alter-terrain, respectively.

The change happens immediately (for the sake of simplicity), but in practice, you may �nd that

preparing for the change may take awhile. For instance, the unit executing the change might have

to accumulate acp or materials required for the change.

2.8 Automation of Units and Sides

Specifying the exact sequence of actions and their operands for every single unit would be

mind-numbingly complex. It's not very realistic either! Therefore, Xconq includes several levels of

automation for human players.

The elements of automation are the task, the plan, the doctrine, and the strategy. These are

related to each other by goals.

Tasks are single activities of a unit that require one or more actions to accomplish. Examples

of tasks include moving to a given position, or waiting 15 turns to be picked up by a transport.

A plan is the unit's object that expresses its decided-upon behavior. Elements of a plan include

a type, goal, and task agenda, as well as more speci�c slots, such as a pointer to the unit currently

under construction. All units that can act and that are on a side will have a plan, while independent

units that can act may have one if preset by a scenario. Plans primarily govern individual behavior,

in many cases allowing the unit to act on its own, without needing any explicit direction from the

player.

The doctrine is the set of parameters governing how the side will play and how its units should

work generally. For instance, per-unit doctrine speci�es the point which a unit low on supply should

start to look for a place to replenish itself.

The strategy and associated subobjects is what an AI uses to make all the decisions about what

to do. This object is not directly visible, unless the AI is acting as your assistant and the interface

includes a display of its current strategy.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 23

Of all these types of objects, only the doctrine can be manipulated directly; all others are

implicitly changed as a result of player commands, which are di�erent for each interface.

2.8.1 Doctrine

There is a doctrine for each type of unit on your side. Several types may share a single doctrine,

so changes to it will a�ect all types equally.

� wait-for-orders

This is true if a unit should wait for explicit orders to be issued. If false, the unit should make

up some sort of default plan and follow it.

� resupply-at

� rearm-at

[more doctrine info]

2.8.2 Plans

A unit's plan must be one of the types listed here.

� None. This type of plan does absolutely nothing.

� Passive. Units with a passive plan will execute any tasks they have been given, but will not

add to the task agenda on their own.

[auto-add tasks if required by doctrine?]

� O�ensive. Units with an o�ensive plan will look for favorable combat opportunities, usually

within an area speci�ed as their goal to hold.

� Defensive.

� Exploratory. Exploratory units will seek to collect information about unknown parts of the

world.

2.8.3 Tasks

Each task in a plan's task agenda must be one of the types listed here.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 24

� Do nothing.

� Build new units, a given number of a given type. This task will do research actions if necessary

and possible, and toolup actions if necessary. Also, if there is an incomplete unit of the given

type nearby, this task will complete it before creating a new unit.

� Stand sentry at the present location for a given number of turns.

� Move in the given direction up to the given distance.

� Move to within a given distance of the given location.

� Move towards another given unit.

� Patrol an area around one or two given points.

� Attempt to hit a unit at a given location.

� Attempt to capture a unit at a given location.

� Resupply.

� Repair.

2.8.4 Time Limits

One reason to automate your units is that some game designs de�ne real-time limits on the

length of a game. For instance, the game might be set to end in one hour, a single turn might be

limited to always last at most 2 minutes, or your side might be limited to 15 minutes of playing

time, in the manner of a chess clock. If such limits are in e�ect, your display should be able to

show you how much time you have left at any moment; pay attention!

When you run out of time, you are not automatically taken out of the game, but you can no

longer do anything with your units. Units that already have plans will continue to act on them.

The game design may give you a limited number of \timeouts" that you can call to stop the

clock. The timeout ends when you order a unit to do something.

[how do players �nd out about time limits?]

2.9 Standard Keyboard Commands

These commands should be available in all versions of Xconq. Additional commands may be

de�ned for some interfaces; see the interface's documentation for more details.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 25

' ' reserve put into reserve for this turn

'?' help display help info

'!' detonate detonate

'.' recenter center around the current point

'#' distance display distance to selected place

'a' attack attack

C-A auto toggle AI control of unit

'b' southwest move southwest

'B' southwest mult move southwest multiple

'C' clear plan clear unit plans

C-C end turn end activity for this turn

'd' delay delay unit action until after others have moved

'D' disband disband a unit

'f' fire �re

'F' formation set formation

'g' give give supplies

'G' give-unit give unit to side

'h' west move west

'H' west mult move west multiple

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 26

'j' south move south

'J' south mult move south multiple

'k' north move north

'K' north mult move north multiple

'l' east move east

'L' east mult move east multiple

'm' move to move to a place

'M' message send a message to another side or sides

C-M end turn end activity for this turn

'n' southeast move southeast

'N' southeast mult move southeast multiple

'o' other other commands

'p' produce set material production

'P' build set up construction tasks

'Q' quit get out of the game

'r' return return to a resupply point

C-R refresh refresh display

's' sleep go to sleep

't' take take supplies from unit or terrain

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 27

'T' take unit take unit from another side

'u' northeast move northeast

'U' northeast mult move northeast multiple

'w' wake wake units up

'W' wakeall wake units and all their occupants up

'y' northwest move northwest

'Y' northwest mult move northwest multiple

'z' survey switch between surveying and moving

The following commands are not standardly bound to single keystrokes.

add player allow another player to come into the game

ai toggle the AI

copying display the copying rules

name set the name of a unit

print print

version display the version and copyright

warranty display the non-warranty

If designing is enabled, then the command

design

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 28

will enable and disable design mode. See Chapter 3 to �nd out more about what you can do in

this mode.

If debugging hooks are enabled, then the commands

D

DG

DM

will be available. They cause detailed transcripts of general computation, graphics, and AI

behavior, respectively. They act as toggles, and are independent of each other, so you can control

what kind of information is output. The transcript will go to stdout or to a �le, depending on the

interface and system.

2.10 Environmental Conditions

Some games include environmental e�ects, which includes what we normally think of as weather;

the temperature, clouds, wind, rainfall, snowfall, and snow cover on the ground.

The temperature falls in a range speci�ed by the game, and may be computed in di�erent

ways depending on the game design, but typically depends on terrain, latitude, the severity of the

seasons, and elevation. Temperature may also vary randomly from turn to turn and cell to cell.

The contribution of each of these to the �nal temperature is up to the game design, as is the e�ect

of temperature.

For each type of unit, there is both a comfort range and a survival range of temperatures. Units

within their comfort range are una�ected by the temperature. Units outside the comfort range,

but within the survival range, may experience reduction in acp and an increase in attrition. Units

outside the survival range die instantly. [add a prob, a al starve?]

A game may include clouds. Their chief e�ect is to a�ect the seeing of units on the other side

of the clouds.

Wind a�ects the weather by causing clouds and storms to move around. Certain unit types,

such as sailing ships and balloons, may depend on the wind to move around.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 29

Games may assert that the playing area represents part of a sphere, possibly tilted on its axis,

and that poles and equator correspond to various latitudes, which has the e�ect of producing

seasons. The game speci�es the temperature extremes for poles and equator, for both midsummer

and midwinter, then the weather phase interpolates to get the average temperature for the current

turn and at each latitude in the world.

2.11 Economy

The economy in Xconq is based upon materials. Games that do not include any material types

do not have any of the activities described in this section.

2.11.1 Consumption

Units consume their supplies, both in the course of existence, and by motion/combat. The rate

depends on game and unit type; it consists of an overhead consumed each turn without fail, and

consumption for each cell of movement. The total is a max, not a sum, since units with a constant

consumption rate are not likely to need additional supplies to move (consider foot soldiers who

eat as much sitting around as they do walking). Supplies may also be consumed for production

and repair, again depending on game and unit types, but this consumption happens during the

build phase. Consumption is not a�ected by the situation of the consuming unit; armies in troop

transports eat just as much as when in the �eld.

2.11.2 Movement of Materials

Excess production is discarded, unless it can be unloaded into the producer's occupying units,

or distributed to nearby units via supply lines. Supply lines automatically exist between units that

are close enough (as set by the game), and there is no need for explicit manipulation.

Supply line length depends on the game and the units on both ends, but is not a�ected by the

intervening terrain. Supply redistribution is managed by logistics experts, who are ignorant of the

war e�ort and seek only to even everything out. The redistribution method is rather adhoc; units

try to get rid of all their excess supply, and try to take up supply from other units within supply

range. Each direction is controlled independently, so for instance airplanes can get automatically

refueled from a nearby city, but not from each other. No unit will transfer all of its supply via

supply lines. Normally units in the same cell can exchange supplies, but some games can disable

this behavior, so that explicit transfer using the give and take commands is always necessary.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 30

2.12 Random Events

Some games may include random events. These are usually rare, but not always { be sure you

know the odds!

2.12.1 Accidents

For some types of units in some types of terrain, there is a chance for an accident to wreck

or eliminate the unit instantly. This depends on both unit type and terrain type. If the accident

occurs, the unit is wrecked or vanishes along with all its occupants. \Wrecking" and \vanishing"

have separate probabilities. Occupants may survive wrecking, but never vanishing.

2.12.2 Attrition

Attrition is \slow death"; it takes away some number of hit points each time it occurs. The rate

of attrition depends on unit type and terrain or transport type. Very low attrition rates may only

take away one hp once in a while.

2.12.3 Revolt

In a revolt, a unit changes sides spontaneously, perhaps to independence, perhaps to the side of

a nearby unit. Occupants will either change over or be killed. Any plans will be cancelled.

2.12.4 Surrender

Surrender only occurs if a unit is capable of attack or capture is close enough to attempt it.

The capturing unit does not move. Occupants of the surrendering unit also change over or die.

2.13 Scoring

Victory at all costs, victory in spite of all terror, victory however long and hard the

road may be; for without victory there is no survival. { WINSTON CHURCHILL

(1940)

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 31

Di�erent games can have di�erent ways for players to win or lose. Some games may not have

any scoring at all. You should be aware of the scoring rules before you start to play the game!

In Xconq, scoring is implemented by a game design's scorekeepers. Each scorekeeper tests

some sort of condition and/or maintains a numeric score. Scorekeepers also de�ne when they run

(perhaps only during certain turns or certain times within a turn) and which sides to look at. Each

scorekeeper is independent of the others, meaning it only takes one to decide if you win or lose.

In a game with many players, winning and losing can be a complicated issue; read the conditions

carefully. A scorekeeper can also decide to declare a game to be a draw and end it on the spot.

Once a side has won, it is out of the game. Some scorekeepers only allow one winner, others

allow several; in those cases, the scorekeeper will say what happens to the winning side's units.

Once a side has lost, it cannot be brought back into a game, even if another side tries to give it

some more units or otherwise to reverse things.

It may also be possible to declare a draw, but all players in a game have to agree to this. While

human players just have to enter the appropriate command (or answer appropriately when asking to

quit the game), AIs may not always be willing to go along, particularly if they think they still have

a chance to win. If that happens, you must continue �ghting. (Some cowards have been known to

abort the program or reboot the machine; unfortunately Xconq cannot prevent such slimy tricks.)

Finally, some games may record everybody's �nal scores into a �le.

2.13.1 \Last Side Wins"

The most common form of scoring in Xconq is called last-side-wins. It is basically a �ght

to the death; any side that loses all of its units loses, and the last side with any units remaining

is declared the winner. It is possible that more than one side will lose all of its units at the same

time, in which case the game is declared a draw.

Since this would sometimes lead to bizarre stalemates (a submarine could hide at sea, thus

preventing the side from losing, for instance), many games also de�ne a point value for units. In

such cases, last-side-wins makes a side lose when the sum of point values of all its units is zero,

and the interface will have some way to display your current points.

[following sections should help player interpret scorekeeper displays]

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 32

2.13.2 Occupation

Occupation means that you have one of your own units in or near a �xed location or unit.

2.13.3 Unit Counts/Sums

This is a simple count of units, or else a summation of the values of some property, such as hit

points.

2.14 Advanced Play

This section covers additional features that may interest experienced players.

2.14.1 Mixing Game Modules

Some interfaces (such as those using Unix-style command lines) may let you ask for more than

one game design when starting up. This is sometimes useful, for instance, if you want to play

on the steppes world with a non-standard set of units; your command line might look like -g

my-hacked-standard -g steppes. You can also turn things around and load a �le with your own

changes after a complete game, as in -g gettysburg -g my-tweaks.

Be aware, however, that this cannot be guaranteed to work always, since the mixed-together

game designs may have mutually con
icting de�nitions, or interfere with each other in subtle or

not-so-subtle ways. Just imagine the disaster if the world consists entirely of terrain that is instant

death to your initial units! Worse, Xconq may start up and run OK for awhile, then at the moment

you're about to win|the object that you must capture simply cannot be captured by any unit at

all.

So be careful about mixing designs!

2.14.2 Personalizing Your Side

Many games will pre-assign your side's name, emblem, enemies, and so forth. However, many

others allow you to change all that to suit your tastes.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 33

The name is a proper noun such as \Poland", the noun is what you would call an individual,

such as \Pole", the plural is for more than one, and <adj> is the adjective for things on that side,

such as \Polish". The color scheme is a comma-separated list of color names, and <image name>

names some sort of image �le (like a bitmap).

The image may be of any size and combination of colors, with the caveat that it may not always

work correctly. For instance, two subtly di�erent shades may get fused into a single solid color.

The emblem should also be small enough to �t reasonably into unit icons. As a rule, most national

ags will �t into a 7x5 rectangle, and coats of arms into a 7x9 region. The color scheme should be

useful by itself, when the unit icons are too small to �t the emblem.

Xconq will not allow you to have the same name, color, or emblem as another player in the

same game.

The interface-speci�c side con�guration uses the favored mechanism for that interface (if one is

de�ned). You should check with the interface documentation for more details.

2.15 Playing Hints

This section is a collection of bits of information and advice derived from players' actual expe-

rience playing Xconq.

2.15.1 Alliances

Informal alliances frequently happen in games involving more than two people, so I have a few

words of advice. First, an alliance between two of the players is almost certain in a three-person

game, and inevitably results in the \odd man out" being quickly defeated. In four-person games,

the alliances could be decided after looking at the map via a command-line option such as -v, so

that one pair is not hopelessly separated. Five or more players is going to be a free-for-all of formal

and informal alliances. Some scenarios are designed with a particular number of players in mind.

2.15.2 Advantage

When you set the advantage, Xconq multiplies the desired advantage with the normal number

of starting units, then divides by the default advantage and ROUNDS DOWN. This means that

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 34

you might end up with a lot fewer units than you thought. For instance, suppose that you have a

game where each player starts with one large city and �ve towns, and this is considered to be an

advantage of 10, because one large city is worth about as much as 5 towns. Then if you select an

advantage of 8, and your opponent selects 14 (because you're a better player perhaps), Xconq will

give you 8/10 of the normal setup, which means four towns and NO large city. Your opponent will

get 14/10 of the setup, which works out to one large city and seven towns, which is really a 1 to 3

disparity, much more than the planned 4 to 7.

2.16 Cheating

There is none. The standard builtin AI mplayer does not cheat; it always plays according to

the same rules as you do. This should be true of any AI that has been added to Xconq. If you

have evidence that would seem to indicate that any AI is using information it should not have, or

is otherwise cheating, that is a bug and should be reported.

2.17 Technical Details

The coordinate system is \oblique", with the X-axis in the usual horizontal, and the Y-axis

vertical, but tilted to the right at a 60-degree angle.

Y

\ /

\/

---------X

/ \

/ \

The additional left-leaning axis is the x = - y line.

2.18 Introduction to X11 Xconq

2.18.1 Installing

No special installation is required.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 35

2.18.2 Resources

For instance, in your X resources, you would say:

Xconq.*,<game>.SideName: <string>

Xconq.*,<game>.SideNoun: <string>

Xconq.*,<game>.SidePluralNoun: <string>

Xconq.*,<game>.SideAdjective: <string>

Xconq.*,<game>.SideColorScheme: <color names>

Xconq.*,<game>.SideEmblem: <image name>

where <game> identi�es the speci�c game or game design, and the resource names correspond

to side slots in the obvious way.

2.19 Playing X11 Xconq

2.19.1 Starting a New Game

2.19.1.1 Command Options

[xref generic options - or put in sep �le?]

2.19.2 Maps

Once the game has started, you have at least one \map window" open. (For brevity, these can

be called just \maps"). Each map window has identical capabilities, so you can play by using just

one, or have one for each area of interest, or have some of them serve specialized purposes, such as

a map of the whole world.

Each map window consists of a number of panes, whose size you may adjust by dragging the

small square grips that are somewhere along the pane boundaries.

The most important subwindow of a map is the map view itself. [etc]

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 36

Each map may have one current position and one current unit. The current position is specially

highlighted, and the info subwindow displays information about it. If in addition there is a current

unit at the current position, then it will be highlighted rather than the entire cell, and the info

subwindow will describe it in detail.

[details/example of info subwindow]

2.19.2.1 Scrolling

It will nearly always be the case that the world is too large to be seen all at once. You can

scroll around in two ways. First, if you are in survey mode, and click near any edge of the view,

Xconq will put the position you clicked at the center of the view. By clicking in the same place

repeatedly, you can \walk" the view in any desired direction.

If you want to go directly to a particular part of the world, use the panner in the bottom right

corner of the map window. To use the panner, click and drag the shadowed box inside the panner.

The panner is sized to match the map, and the shadowed box is sized to match the view, so you

can get a general idea of much is visible of the whole world.

2.19.2.2 View Control Popup

If you click the button \More..." in the leftside controls, you will get a popup dialog that is a

full set of viewing controls. Unlike the leftside view controls, these do not act at once; instead, you

toggle them on or o�, then click on \Apply" or \Done" to see the e�ects. This allows you to make

a number of changes and have the map be redrawn only once. \Apply" leaves the popup in place,

while \Done" makes it go away. You may leave the popup up permanently and continue play, if

you like.

Note that each map will have its own separate view control popup, and that they're not clearly

distinguished from each other. Fortunately, these only a�ect display, not the game itself.

2.19.3 Play

The basic idea of play is to be in move mode, let the program select the next unit to do

something, then give it a command, either by clicking the mouse or by typing on the keyboard.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 37

Each map may have two modes; \survey" and \move". In survey mode, the default actions

are not to do anything, while in move mode, the default actions are to do things. This principle

applies to both mouse and keyboard commands. For instance, 'h' in survey mode moves the current

position west by one cell, but in move mode it causes the current unit to try to move west by one

cell.

2.19.3.1 Using the Mouse - er - Pointer

Although in classic X style, all the actions may be arbitrarily rebound, for simplicity the default

Xconq setup uses the left button for the most important actions.

2.19.3.2 Using the Keyboard

The general commands all work as described in Chapter 2.

Commands that work on units will be applied to the current unit of the map that the pointer

is over. If the map has no current unit, then you will get an error message.

Commands that need further input will generally request it from the prompt subwindow that is

sandwiched between the history subwindow and the date subwindow. You do not need to put the

cursor over the prompt window to type into it however; when a prompt is up, any typed characters

will be considered to be part of the answer to the prompt.

2.20 Designing with X11 Xconq

There are two ways to get into designer's mode; you can either specify `-design' on the command

line, or else enter the long command `design' after doing the o command. When you do either

of these, several things will happen: the side list will mark your side as a designer, the \see all"

button in the view control panel will be enabled, and you will get a popup with designer's tools.

The popup applies to all maps equally.

The identi�cation in the side list is for the bene�t of other players, since it is actually possible

to enable designing in a multi-player game.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 38

The \see all" view control allows you to see everything accurately. It is switchable so you can

compare what things look like to the player vs what they are in reality.

Shortcuts:

* Clicking on the "sides" subwindow will select the current side.

* Clicking on the "unit types" subwindow will select the current unit type.

* Clicking a cell with the right mouse button in terrain-drawing mode will select the current

terrain.

* Clicking a unit with the right mouse button in unit-adding mode will select the current unit

type.

* Clicking a unit with the right mouse button in people-drawing mode will select the current

side.

* Clicking a cell with the right mouse button in feature-drawing mode will select the current

feature.

2.20.1 Xshowimf

Install the resource �les XShowimf.ad and XShowimf-co.ad as XShowimf and XShowimf-co [or

XShowimf-color, depending on the value of the customization resource] in the proper directory, or

load the relevant �le with "xrdb -merge".

Display of three-color images (mono+mask) is controlled by the resource "maskColor" (see

XShowimf-color.ad) or by the command-line argument "-mc"

On a sun, compile with gcc, not with cc.

To use as an image family editor, use as mkdir tmp xshowimf [imf/xbm/xpm �les...] -o tmpdir

& (cd tmpdir; xpaint) & and see help window; don't forget to "update" edited �les.

2.21 Introduction to Mac Xconq

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 39

2.21.1 Installing

Xconq requires no special installation once you have unpacked it. Since the distribution consists

of a number of �les and folders in addition to the application proper, it will be less confusing to

keep Xconq in a separate folder.

`Xconq' is the game application. It has been tested on nearly every kind of Mac (including

PowerMacs), all running 7.0 or better. No init/extension compatibility problems have been reported

so far.

`lib' is a folder of game modules.

`lib-mac' includes Mac-speci�c �les referenced by game modules. Xconq doesn't absolutely

have to have these �les, but you may lose some pictures or sound e�ects without them.

`doc' is the folder of generic documentation for players and game designers. It does not have

any Mac-speci�c information. The format is Texinfo, which is based on TeX, which you'll need

TeXtures or OzTeX and the texinfo.tex �le to format, sorry.

`IMFApp' is a small utility for game designers to display and convert images used in Xconq games.

See below for information on how to use `IMFApp'.

2.21.2 Playing an Introductory Game

Double-click on the Xconq icon. You get an initial screen with several buttons. Click on New.

You get a list of available games. The \Introductory" game should be highlighted; if not, then �nd

it in the list and click on it. Then click OK. You then get a list of sides and players; click OK

again. After some activity, you see several windows open up.

The most important window is the map. It's mostly black, indicating that you don't know

anything about what's out there. You should see a small picture of a city, and a small picture of a

diagonal line of soldiers below it; the soldiers have a heavy black outline around them. This means

that they are ready to move. Note that the cursor is a arrow, and that it always points away from

the soldiers. This means that if you click anywhere in the map, the soldiers (your \infantry unit")

will try to move to the place you clicked. This happens the same whether you click in an adjacent

hex (or \cell") or one far away, or even somewhere out in unknown regions. Your infantry is smart

enough to �nd its way around some obstacles, and will stop and wait for new orders if they are

blocked.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 40

Click to move the infantry a few times. Notice that the turn number is changing at each move.

Then all of a sudden Xconq will highlight a new infantry! Your city was working on it quietly while

you were moving the �rst one; now Xconq will ping-pong between the two, asking �rst about one,

then the other. Get used to it - it won't be long before you have dozens or even hundreds of units

at your command! Fortunately for your sanity, Xconq provides some assistance - more on that

later.

At this point you should have several infantry wandering around. Use them to explore the world

- send each out in a di�erent direction so as to learn the most the fastest. Eventually they will

have spread out so much that Xconq has to scroll over to each one before asking about it. This can

be a little disorienting. One thing you can do is to go to a lower magni�cation for the map; either

click on the small mountains picture in the lower corner of the map window, or go to the \View"

menu and pick something from \Set Mag". With a little experimentation, you will see that you

can magnify so much that a single hex nearly �lls the window, or make the whole world appear to

be the size of a postage stamp.

[control options]

[�nish describing startup of intro in great detail]

2.22 Playing Mac Xconq

2.22.1 Starting a Game

The splash screen gives you four choices: New, which brings up a list of games; Open, which

allows you to pick a �le; Connect, which will (when it works) allow you to pick a game to join; and

Quit, which lets you escape.

Usually you will want to choose New, which brings up a dialog listing all the games. You can

select one and see a brief description of it.

You can also load a game from a �le by clicking on the \Open" button. This just uses the

standard Mac �le-opening dialog. You can restore a saved game this way. Double-clicking on a

saved game or other game �le works too.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 41

2.22.1.1 Loading a Game

Whether you've chosen from New Game or Open Game, Xconq will go through a loading process,

which may take a while if the game is large or complicated.

You may get some warning alerts, which are often benign (such as an inability to �nd some

images), but others are indicative of disaster ahead. If you see one and continue anyway, don't be

surprised if the game goes up in a cloud of smoke later!

2.22.1.2 Variants

If the game includes any \variants", you will then get a dialog with assorted buttons and

checkboxes to choose from. For instance, some games let you choose whether the whole world is

visible when you start, or what kind of scoring system to use.

Di�erent games have di�erent variants, but there are several used by many games.

The \World Seen" checkbox, when set, makes the whole world seen right from the beginning of

the game. This only a�ects the initial view, and you will only see some types of units belonging to

other players, such as their cities.

The \See All" checkbox makes everything seen all the time, right down to each occupant of each

unit of each side. This makes Xconq more like a boardgame, where everything is \on the table"

(so to speak).

The \World Size" button brings up a dialog that you can use to change the dimensions of the

world in everybody will be playing. In Xconq, the available area of the world is either a hexagon,

or a cylinder wrapping entirely around the world. You get the cylinder by setting the circumference

equal to the width of the area. See the generic player's manual for more details about world size

and shape.

[\Real Time" button]

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 42

2.22.1.3 Player Setup

The player setup window shows the sides that will be in the game and who will play each side.

As with the variants, you will often just want to accept it (click \OK"), since the game's designer

usually sets the defaults reasonably.

If you want to change the setup, you �rst need to understand the current set of sides and

proposed players. Each entry in the list of sides starts o� with the side's emblem (if it has one),

followed by the name of side, then in italics, some information about the player, and then the initial

advantage for the player. You, the person sitting in front of the screen, is described as \You", while

players that are actually run by the computer are described as \AI mplayer", \AI" being short for

\arti�cial intelligence" (In some games, a player may be a specialized AI, named <name>, in which

case it will be described as \AI <name>".)

In games that allow you to have more than the default number of sides, you can just click the

\Add" button. All the other controls require you to have selected a side/player pair. You can

do this by clicking anywhere in one of the boxes describing the side/player pair, which will be

highlighted in response.

The \Computer" button toggles the AI for that side. You can add an AI to any side (including

your own side; more on that later). You can also remove the AI from any side; a side with no AI

and no human player will just sit quietly and do nothing throughout the entire game.

If you don't like the side you're on, you can use the \Exchange" button to switch. The ordering

of the sides is �xed, so exchange just exchanges players between the currently selected side/player

pair and the next one.

2.22.1.4 Final Setup

When all the setup dialogs have been OKed, Xconq will �nish setting up the game. For some

games, this will take quite a while - Xconq generates random terrain, positions countries so that

they are neither too close nor too far apart, and does many other things to set up the game, so just

kick back and watch.

Once everything is set up, Xconq then opens up the game window, the instructions window,

and one map window for you. The map shows you terrain with di�erent patterns, and your playing

pieces (units) with small pictures.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 43

Note that some Xconq games allow the AI either to act �rst, or to start acting as soon as the

windows come up. You may even �nd yourself being attacked before you know what's happening!

2.22.2 Playing a Game

The basic pattern of play is to �nd a unit in a map or list window, click once to select it, and

then pick commands from the \Play" menu. There is also an \auto-select" mode that does the

selection for you and interprets mouse clicks as movement commands; Xconq actually starts up in

this mode [, but this is a preference you can set].

You can select units by clicking on a unit, shift-clicking a group, dragging out a selection

rectangle, or by using Command-A to select all units. A selected unit is indicated by an outline

box - solid black to indicate that it can move, dark gray to indicate that it cannot move, and gray

to indicate that it cannot do anything at all (at least during this turn; some types of units may

only get to do something once in a while). If clicking on a unit image doesn't have any e�ect, then

it's not a unit that belongs to you.

To move a selected unit, drag the selected unit to its desired new location. The unit might not

move right away if it doesn't have the action points, but it may get some in the next turn. To move

all selected units, do Command-click on the desired location and all of them will attempt to move

there.

To shoot at another unit, you can position the mouse over the desired target, type 'f', and all

selected units will attempt to �re. This works even if all units are selected, so you can call down

considerable destruction with 'f' ! If the target is too far away, nothing will happen.

To �nd out more about a unit, pick \Closeup" from the \Play" menu or do Command-I. This

brings up a window that shows all kind of data about a single unit. You can leave this window up

and it will always be kept up-to-date.

To jump ahead to the next turn, do the menu command \End Turn" or <return>. You may

have to do this if some of your units still have action points, but not enough to do any of the things

you want them to do.

The Game window (Command-1) shows the status of all the sides in the game. The window

shows both the emblem (if available) and name of each side. A small computer icon indicates that

an AI is running the side, while a face icon indicates your side's relationship with the side (frowning

= enemy, etc).

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 44

Each side also has a progress bar that shows how many actions its units have left to do.

[describe auto-selection]

2.22.3 Menus

This section describes all the menus.

2.22.3.1 File Menu

The File menu includes the usual sorts of commands that all Mac programs share.

[New Game]

Brings up the new game dialog.

[Open Game]

Brings up a standard �le dialog. Xconq will assume the selected �le to be a game de�nition and

attempt to load it as such.

[Connect]

Use the Connect item to join in a game that is already running elsewhere. (Not implemented

yet.)

[Save]

Saves the game to a �le.

[Save As]

Saves the game to a �le, with a name chosen from a dialog that pops up.

[Preferences]

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 45

Brings up a dialog that you can use to select various options. [need to describe preferences]

[Page Setup]

[Print Window]

Prints the front window.

[Quit]

Leaves Xconq.

2.22.3.2 Edit Menu

Note that there is no Undo. Hey, this game is a life-or-death struggle, and you may have noticed

that you don't get an Undo in real life either...

[Cut] [Copy] [Paste] [Clear]

These are not currently supported either (who's that knocking at the door? Oh no, it's the

Human Interface Police! Please don't take me away, I was going to get around to �guring what

Copy was supposed to mean for a strategy game, honest! Nooooooooo...)

[Select All]

Selects all units that you are currently allowed to select. Most commands will operate on

multiple unit selections, so this is a powerful (and therefore dangerous) option. For instance, if you

select all units then put them all to sleep, nobody will do anything at all.

[Design...]

The Design item is for access to game designer tools. You cannot use these during a normal

game; you will be asked to con�rm that you want to design, and if so, Xconq will change all the

windows appropriately and bring up a special designer's palette. This is a one-way activity; once

somebody in the game becomes a designer, all players will be noti�ed and computer-run players

will no longer bother to play. (In case it's not obvious, this is because it's too easy to cheat using

the designer's powers.)

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 46

2.22.3.3 Find Menu

This menu is for various kinds of searching.

[Previous Actor]

[Next Actor]

[Location]

[Unit by Name]

[Selected]

Scrolls the most recently-used map over to show the selected unit in a list.

2.22.3.4 Play Menu

This menu is the main set of commands that you can give to individual units. When you specify

one of these, the units a�ected will be whatever is selected in the window. If the window is of a

type that does not have selected units (such as a help window), then the items on this menu will

be disabled.

[Closeup]

Opens closeups (see below) of all the selected units.

[Move]

[Patrol]

[Return]

Directs the selected units to return to the closest place where they can replenish supplies that

have been used up and/or get repairs to any damage.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 47

[Wake]

Wakes up the selected units.

[Sleep]

Puts the selected units to sleep.

[Reserve]

Puts the selected units into reserve.

[Build]

Brings up the construction window and selects the �rst of the selected units that can do con-

struction.

2.22.3.5 Side Menu

This menu is for overall control of the side you're playing.

2.22.3.6 Windows Menu

This menu is for the creation and arrangement of windows.

2.22.3.7 View Menu

The View menu gives you control over the appearance of the window you're currently looking

at. Each kind of window that has any view controls will have a di�erent view menu. Currently

only map and list windows have view menus. Each window has its own view settings, although you

can set defaults for new windows from the preferences. You can �nd the descriptions of each view

menu's items under the description of its window, below.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 48

2.22.4 Windows

Xconq lets you have many windows open at once. Each type has its own specialized functionality.

2.22.4.1 Map Windows

[picture of map window]

A map window gives you an overhead view of some part of the Xconq world. As you might

expect, you can scroll around to look at di�erent parts. You can also zoom in and out using the

small zoom icons in the lower left corner; zooming in (\closer mountains" icon) makes the cells

larger, while zooming out (\farther mountains" icon) makes the cells smaller, so you can see more

of the world. You can zoom way in or out!

The optional \top line" of the map window supplies you with information about what the cursor

is currently over, plus the current game date.

The map control panel is along the left side. At its top is the auto-select/move-on-click button.

Below that is a set of �nd-next/previous buttons. The next set of buttons is controls for how the

map will be displayed. These behave identically to the map's View menu items.

Map View Menu

Since maps are the main interface to Xconq games, you have many options for controlling their

appearance.

2.22.4.2 Game Window

The game window shows you the turn number or date of the current turn, as well as any realtime

clocks that may be counting down, and a list of all the sides. For each side, you see its name, the

emblem for that side, a progress indicator, and icons indicating the side's attitude and whether it is

being played by the computer. You may also numbers indicating scores and/or real time remaining.

The progress bar shows how much movement a side has done during the turn. This usually goes

down during the turn, but because it indicates a percentage rather than an absolute number of

actions, the percentage may go up sometimes. For instance, if some of your units that have already

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 49

acted are captured, then the percentage goes up because the *total* number of actions has gone

down! A gray bar indicates that the side has �nished all movement for this turn. There may also

be a dashed vertical line in the bar, which indicates the percentage of units that are asleep or in

reserve. Note that a player can always wake up sleeping or reserve units at any time before the end

of the turn.

2.22.4.3 List Windows

A unit list window just lists all the units, one line each. This is useful for getting a more

organized look at your assets. A unit listing shows the icon for the unit, its name and type, action

points, hit points, supply, etc.

You can create more than one list window.

List View Menu List view controls typically either a�ect what will be listed, or the sorting of

the list. There is also an item to control the size of the unit icons.

2.22.4.4 Unit Closeup Windows

For any unit, you can create a closeup window. This window supplies full details on the unit.

2.22.4.5 Construction Window

You use the construction window to control the construction of new units. The window comes

in two parts; the left side is a list of all the units that can do construction, while the right side is a

list of all the types that can be constructed.

2.22.4.6 Instructions Window

The instructions window is the basic info about what game you're playing and what you're

supposed to do. Many game designs have few or no instructions. There is a Help button that just

brings up the help window.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 50

2.22.4.7 Help Window

Xconq's help information is organized into a list of topics. When you �rst open the help window,

you will see the list, and a row of buttons. To look at a speci�c topic, just click on it.

The \Topics" button goes straight to the list of topics, while the \help" button shows you the

topic describing the help system itself. \Prev" and \Next" buttons take you through the topics in

order, while \Back" goes to the last topic you looked at.

2.22.5 Keyboard Commands

[list them all - get from help info automatically]

2.23 Designing with Mac Xconq

Designer's tools and capabilities are available via the Design item in the Edit menu. The display

changes to show you everything in the world, you get a number of special privileges (such as the

ability to look at and move ANY unit), and you get a designer's tools palette.

2.23.1 Using the Palette

In general, palette items use option-click and option-shift-click to cycle through possible values,

and many also have a popup menu. Also note that the selection can be changed without changing

the tool; you have to click in the tool and get a heavy border around it before the tool is actually

changed. Each type of designer tool has a distinct cursor when over a map window, so look for

that as well.

2.23.1.1 Painting Terrain

If you select the terrain item in the palette, then clicking/dragging in a map paints the current

terrain type displayed in the palette (Option-clicking the terrain item cycles through all the types,

shift-option-click does the same thing in reverse order). The background terrain type can be cycled

via command-click and command-shift-click.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 51

2.23.1.2 Creating Units

The side item creates a popup with the sides - use it to set the side with which a new unit will

be created. Not all units are allowed on all sides - Xconq marks the sides that are allowed with the

current unit type, and the unit types that are allowed with the current side.

2.23.1.3 Painting People

If you select the side item in the palette, you can click/drag in a map to set the side of the

people in the cells clicked or dragged over.

2.23.1.4 Painting Material

You can create materials in the terrain by selecting the materials item in the palette, then

painting in any map.

2.23.1.5 Creating Named Features

The features item in the palette includes several buttons and a popup menu that displays all the

features currently de�ned. You can click on the buttons to create, destroy, and rename a feature.

You can add or remove cells of a feature by painting in any map.

2.23.1.6 Painting Elevations

You can set the elevations of terrain by selecting the elevations item in the palette, then painting

in any map.

2.23.1.7 Painting Temperatures

You can set the temperatures by selecting the temperatures item in the palette, then painting

in any map.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 52

2.23.1.8 Painting Winds

You can set the direction and force of winds by painting them. The values of direction and force

are controlled by option-[shift-]click and command-[shift-]click, respectively.

2.23.1.9 Painting Clouds

If you select the clouds item of the palette, you can set the density of cloud cover by painting.

2.23.2 Beyond the Designer Palette

The designer palette and privileges just scratch the surface of what you can do with Xconq.

You can de�ne your own complete games with Xconq using its Game Design Language (GDL), a

declarative Lisp-like language with many more capabilities than could be provided interactively (in

much the same way that HyperTalk scripting adds to basic HyperCard)/ TheXconq manual chapter

\Designing Games with Xconq" goes into much more detail about Xconq's programmability, and

the chapter \Reference Manual" is the complete description of GDL's abilities.

For the Mac speci�cally, there are some additional customizations that you can do.

If the Resources �le has a PICT whose name is \<game-name> game", then if a player selects

<game-name> in the new game dialog, this PICT will be displayed in the dialog. This is useful

to give prospective players more of an idea of what the game might be like, plus it's a chance to

show o� your artistry! (If you're a lousy artist, just make a screen shot of the map and use that.)

The area for the picture is about 200 pixels across and 100 high; pictures smaller than that will be

centered, while larger pictures will be clipped to �t.

2.23.3 Images

If you want to change the icons and pictures in an existing game, or if you want to de�ne new

ones, you can do this either with a resource editor such as ResEdit, or with a resource compiler

such as Rez, or by editing the portable \imf" �les. Xconq can use PICTs, icons, and patterns to

draw with; collectively these will be called \images". A group of images that all represent di�erent

views of the same thing is an \image family". The concept is similar to the icon families used

by Macintosh programs, but is much more general, since you can have any number of images of

di�erent sizes and depths, as well as images embedded in each other.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 53

The resource �le :lib-mac:Images is the main repository of Mac imagery. You can resource-edit

this �le, close it, start up Xconq, and see the results. For instance, if you want to improve the

appearance of the \city20" image, you will �nd a 32x32 'cicn' with that name as well as a 16x16

'sicn'. You can modify these as you like. Note that the 'sicn' includes a mask sicn, as does the

'cicn'. Masks are optional, but improve the appearance of the images. If you have a new type in a

game and you want an image for it, just create a resource, such as a 'cicn', give it the name of the

type or its \image-name" property, and you're done.

The standard resource types for images are 'cicn', 'ICON', 'PAT ', 'ppat', 'SICN', and 'PICT'.

If a resource of one of these types has a name matching the \image-name" (or the type name if

no image name is de�ned) of a type in a game, then Xconq will use that resource. There are two

additional resource types: 'XCic' and 'XCif'. The 'XCic' resources are named colors that can be

referred to via \color" properties of types and sides. 'XCif' resources are raw image family forms

in GDL syntax. If the contents of an image family can be totally de�ned by the standard resource

types, then there need not be an 'XCif' resource, but if an image has any embedded subimages,

or a speci�c location for subimages, then this information will be in the XCif resource. You can

edit by de�ning this resource type as 'TEXT', which will give you a text editor for the resource,

or by just opening the 'TEXT' editor on the resource. For more details about the syntax of image

families in GDL, see the general manual.

Warning: don't ever make a 'cicn' with id 256! For some reason, if there is a 'cicn' 256 in either

the application or in any of the resource �les that it has open, the small color icons in both the

apple menu (far left) and the application menu (far right) become small unrecognizable blobs. This

e�ect seems to be innocuous behaviorwise, but the appearance is poor, and users choose menu

items by looking at those icons, so trashing them is a bad thing to do.

2.23.4 IMFApp

IMFApp is a utility for examining and converting the image families used by Xconq.

It is intended for use by game designers, as an aid to importing and exporting game-related

imagery.

The general concept of image families is similar to the Finder icon families, where several depths

and sizes of an icon are available for use in di�erent situations. Xconq adds extra complexity to

the concept by including tiling patterns, by allowing icons to be embedded in each other, and by

using the same image families on several di�erent platforms.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 54

The platform-independent format is not very e�cient to use and would be hard to edit, so

IMFApp includes functions to convert between the common format and Mac resources. These

functions are available from the File Menu.

In addition, IMFApp also allows you to look at the images. You can control the images' size,

overlay, and use of color. The primary use for this is to test how an image works in various

situations. Also, if you design games, this is a good place to start when choosing images for your

game. Since there are hundreds of images available already, the chances are good that the images

you want have already been designed.

The File menu has items to open and save imf and resource �les. New clears any existing images.

Opening multiple �les merges their contents.

The Edit menu is not used.

The View menu includes all image appearance controls. Everything in this menu a�ects only

the *display* of the images, and does not, in any way, a�ect the image families themselves. Display

options include size of images, color/mono, name, mask, background/emblem images, and more.

2.23.5 Sounds

Mac Xconq handles sounds in a very simple way. The resource �le `:lib-mac:Sounds' includes

a number of named `'snd '' resources.

[not actually useful yet - names wired into macmap.c]

2.24 Troubleshooting Mac Xconq

If Xconq crashes, that is a serious problem; please report it, and include as much information

about your setup, what you were doing, etc.

Xconq will sometimes display \error" or \warning" alerts. These can be caused either by bugs in

Xconq, or more likely, by mistakes in the design of the game you're playing. For instance, you may

be playing a version of a game that has been modi�ed by one of your friends, but the modi�cation

was not done correctly, and you'll get an alert unexpectedly.

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 55

\Error" alerts are fatal; you may be able to save the game at that point, but don't count on

it. Common ones include errors because you're loading a text �le that is not an Xconq game, and

running out of memory. Most error alerts occur during game startup, while Xconq is checking out

the game de�nition that it's loading. Error alerts that appear during a game, and do not involve

running out of memory, are more serious, and may indicate bugs in Xconq, so you should save the

game and report what happened.

There are many kinds of \warning" alerts. Warnings are not fatal, but they do indicate that all

is not well. If you get a warning alert and don't know what it means, it's safer to quit than to try to

struggle on. Most warnings indicate mistakes in the design of the game you're playing, and should

be reported to the game designer. The following describes several common types of warnings:

* Missing images: A game design may not have had images de�ned for all types of units and

terrain. Xconq will warn about this, then make up some (ugly) default images itself. Actual game

play will be una�ected.

* Sides have undesirable locations: A game can specify how close and how far away each side

should be from all the others, and the kind of terrain each will start on. If the world is too small,

or doesn't have the right kinds of terrain, then Xconq will warn about this. The game will still

play normally, but it may be grossly unfair, and if the sides start out hidden from each other, it

may be a while until it becomes obvious how unfair it really is.

You may also run into these bugs:

* Units sometimes appear or disappear unexpectedly. Type Control-R, which recalculates visi-

bility of everything.

* In the construction window, clicking on \Build" doesn't always result in a unit being created

immediately. It may be that the builder has used up its acp and can't start construction until the

next turn, or that it hasn't come up for executing actions in the current turn. Clicking a second

time will make the construction start immediately.

2.25 Introduction to Curses Xconq

Curses Xconq is a version that requires only an ASCII terminal and a curses library for cursor

movement and screen management. As a result, it will run almost anywhere. [including DOS -

should try to build it under go32 or some such]

4 May 1995DRAFT d35 DRAFT d35

Chapter 2: Playing XconqXconq 56

However, in exchange for this higher degree of portability, you lose a lot in display power, and

games may become much more di�cult to play. For instance, roads and rivers cannot be represented

directly, and you will have to rely on the textual displays to see which directions have them.

(Incidentally, this curses interface is the oldest one in Xconq, predating even the X10 interface

that was part of version 1's release in 1987.)

2.25.1 Installing

The name of the executable is `cconq'.

[pathname to library info]

2.26 Playing Curses Xconq

When `cconq' starts up, it takes over the whole screen, in the traditional fashion of curses

programs.

[include 60-char-wide term snap shot]

[verbal description of subwindows]

[move and survey modes]

2.27 Designing with Curses Xconq

Although `cconq' does not have the richness of display that is best for designing games, it does

have a basic set of commands for that purpose.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 57

3 DesigningGames withXconq

In this chapter, you'll learn how to design new kinds of games with Xconq. Xconq has been

designed to support the use of a variety of techniques to design, construct, and test your game

idea. These techniques range from text �le editing to online painting, and you will likely �nd a

combination of techniques to be most e�ective.

As the person customizing Xconq, you will be called the designer. This term also indicates

the primary activity, which will be to Design The Game. The capabilities described below are

merely tools; it is up to you the designer to exercise discretion and judgement in using them. Some

principles of game design will be discussed in at the end of this chapter. Note that this chapter is

merely an overview of game design machinery; for precise de�nitions, see Chapter 4. The glossary

de�nes all the terms.

You design games using Xconq's Game Design Language (GDL). GDL is Xconq's common

language for de�ning all parts of a game, from the entry in the menu that players select games

from, down to the last tiny detail of a saved game. GDL resembles Lisp, although (at the present

time) it is not a procedural language; there are no functions or even any control constructs. Instead,

the contents of a �le guide the creation or modi�cation of Xconq objects representing types, tables,

units, and so forth. While a game is being played, Xconq uses this data to decide what to do and

what to allow players to do.

(People often have trouble with parentheses in Lisp, but if you follow the same kinds of inden-

tation rules that you always use in C or Pascal, then you will encounter no additional trouble.

Also, many editors such as Emacs are intelligent enough to indicate when parentheses match, and

automatically do proper indentation.)

In this chapter, \you" always means means you the designer, and players will be referred to as

\players" or \users". The distinction is important; as the game designer, you will encounter and

deal with many technical issues relating to the inner workings of Xconq, but if you master those

issues, your players will see only a fun game to play.

A �nal caveat before plunging in: Xconq is an experiment in the design and construction of

con�gurable games. This means I have had limited prior art on which to build, and there are lots

of odd corners that have never been tested or even thought about. In this spirit, I would like to

hear about weird cases, and ideas for how to handle them.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 58

3.1 A Tutorial Example

Before delving into the depths of the language, let's look at an example. Suppose you just

�nished watching a Godzilla movie, complete with roaring monsters, panic-stricken mobs, �re

trucks putting out
ames, and so forth, and were inspired to design a game around this theme.

3.1.1 Basic De�nitions

Start by opening up a �le, calling it something like g-vs-t.g, or some other name appropriate

for your type of machine, and then type this into it:

(game-module "g-vs-t"

(title "Godzilla vs Tokyo")

(blurb "Godzilla stomps on Tokyo")

)

This is a GDL form. It declares the name of the game to be "g-vs-t", gives it a title that

prospective players will see in menus, plus a short description or blurb. The blurb should tell

prospective players what the game is all about, perhaps whether it is simple or complex, or whether

it is one-player or multi-player. Both title and blurb are examples of properties, which are like slots

in structures.

The game-module form is optional but recommended; some interfaces use it to add the game to

a list of games that players can choose from.

The general syntax of game-module form is similar to that used by nearly all GDL forms; it

amounts to a de�nition of an \object" (such as a game module or a unit type) with properties (such

as name, description, speed, etc). Some properties are required, and appear at �xed positions, while

others are optional and can be speci�ed in any order, so they are introduced by name. The general

format, then, looks like

(<object> ... <required properties> ...

...

(<property name> <property value>)

...

)

There are very few exceptions to this general syntax rule.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 59

Now the �rst thing you'll need is a monster. In Xconq, each unit has a type, and you de�ne the

characteristics attached to the type.

(unit-type monster)

This declares a new unit type named monster, but says nothing else about it. Let's use this

more interesting form instead:

(unit-type monster

(image-name "monster")

(start-with 1)

)

This shows the usual way of describing the monster. In this case, image-name is a property that

speci�es the name of the icon that will be used to display a monster. The property start-with

says that each side should start out with one monster. This isn't quite right, because there should

only be one side with a monster, and this will give each side a monster to start out with, but we'll

see how to �x that later on.

We also need at least one type of terrain for the world:

(terrain-type street (color "gray"))

Streets are to be gray when displayed in color, and get nothing if they are being displayed on a

monochrome screen.

These two forms are actually su�cient by themselves to start up a game. (Go ahead and try it.)

However, you'll notice that the game is not very interesting. Although each player gets a monster,

and an area consisting of all-street terrain is displayed, nobody can actually do anything, since the

defaults basically turn o� all possible actions.

3.1.2 Adding Movement

Well, that was dull. Let's give the monsters the ability to act by putting this form into the �le:

(add monster acp-per-turn 4)

The add form is very useful; it says to modify the existing type named monster, setting the

property acp-per-turn to 4, overwriting whatever value might have been there previously. The

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 60

acp-per-turn property gives the monster the ability to act, up to 4 actions in each turn. By

default, the ability to act is 1-1 with the speed of the unit, so the monster can also move into a

new cell 4 times each turn. If you run the game now, you will �nd that your monster can now get

around just �ne. Why 4? Actually, at this point the exact value doesn't matter, since nothing else

is happening. If the speed is 1, then the turns go faster; if the speed is 10, then they go slower

and more action happens in a single turn. In a complete design however, the exact speed of each

unit can be a critical design parameter, and for this game, I �gured that a speed of 4 allowed a

monster to cover several cells in a hurry while not being able to get too far. Also, I'm planning to

make panic-stricken mobs have a speed of 1, which is the slowest possible. Making actions 1-1 with

speed is usually the right thing to do, since then a player will get to move 4 times each turn (later

on we will see reasons for other combinations of values).

The add form works on most types of objects. It has the general form

(add <type(s)/object(s)> <property name> <value(s)>)

The type or object may be a list, in which the value is either given to all members of the list,

or if it is a list itself, then the list of values is matched up with the list of types.

3.1.3 Buildings and Rubble Piles

To give the monster something to do besides walk around, add buildings as a new unit type:

(unit-type building (image-name "city20"))

(table independent-density (building street 500))

The building type uses an icon that is normally used for a 20th-century city, but it has the

right look. The independent-density table says how many buildings will be scattered across in

the world. The table form consists of the name of the table followed by one or several three-part

lists; the two indexes into the table, and a value. In this case, one index is a unit type building,

the other is a terrain type street, and the value is 500, which means that we will get about 500

buildings placed on a 100x100 world (look up the de�nition of this table in the index). You need

some for testing purposes, otherwise you won't see any when you start up the game.

We're going to let buildings default to not being able to do anything, since that seems like a

reasonable behavior for buildings (although Baba Yaga's hut might be fun...).

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 61

By default, buildings act strictly as obstacles; monsters cannot touch them, push them out of

the way, or walk over them. In real(?) life of course, monsters hit buildings, so we have to de�ne

a sort of combat.

(table hit-chance

(monster building 90)

(building monster 10)

)

(table damage

(monster building 1)

(building monster 3)

)

(add (monster building) hp-max (100 3))

The hit-chance and damage tables are the two basic tables de�ning combat. The hit chance

is simply the percent chance that an attack will succeed, while the damage is the number of hit

points that will be lost in a successful attack. The unit property hp-max is the maximum number

of hit points that a unit can have, and by default, that is also what units normally start with.

Note that the add form allows lists in addition to single types and values, in which case it just

matches up the two lists. The add tries to be smart about this sort of thing; see its o�cial de�nition

for all the possibilities.

The net e�ect of these three forms is to say that a monster has a 90% chance of hitting a

building and causing 1 hp of damage; three such hits destroy the building. A monster's knuckle

might occasionally be skinned doing this; a 10% chance of 3/100 hp damage is not usually dangerous,

and feels a little more realistic without complicating things for the player.

Now you can start up a game, and have your monster go over and bash on buildings. Simulated

wanton destruction!

By default, a destroyed building vanishes, leaving only empty terrain behind. If you want to

leave an obstacle, de�ne a new unit type and let the destroyed building turn into it:

(unit-type rubble-pile (image-name "???"))

(add building wrecked-type rubble-pile)

In practice, you have to be careful to de�ne the behavior of rubble piles. What happens when

a monster hits a rubble pile? Can the rubble pile be cleared away? Does it a�ect movement? Try

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 62

these things in a game now and see what happens; sometimes the behavior will be sensible, and

sometimes not.

For instance, you will observe that the default behavior is for the rubble pile to be an impene-

trable obstacle! The monster can't hit it, and can't stand on it, and in fact can't do anything at

all. OK, let's �x it. Monsters are agile enough to climb over all sorts of things, so the right thing

is to let the monster co-occupy the cell that the rubble pile is in. The default is to only allow one

unit in a cell, but this can be changed:

(table unit-size-in-terrain (rubble-pile t* 0))

This says that while all other units have a size of 1, rubble piles only have a size of 0. By default,

each terrain type has a capacity of 1, so this allows one unit and any number of rubble piles to

stack together in a cell.

If you try this out, you'll �nd that the monster can now cross over rubble piles, but still has to

bash buildings in order to get them out of the way.

Incidentally, it can cause problems to set a unit size to zero, because it allows in�nite stacking.

Since buildings and rubble piles don't move, there will never be more than one in a cell, but Xconq

will happily let hundreds of units share the same cell, which works, but causes no end of headaches

for players confronted with overloaded displays.

3.1.4 Human Units

Now you've got an \interactive experience" but no game; there's no challenge or goal. You could

maybe make a two-or-more-player game where the players race to see who can
atten the mostest

the fastest, but that's still not too interesting to anyone past the age of 5. Instead, we need to

make some units for the people bravely (or not so bravely) resisting the monster's depredations:

(unit-type mob (name "panic-stricken mob") (image-name "mob"))

(unit-type |fire truck| (image-name "firetruck"))

(unit-type |national guard| (image-name "soldiers"))

Note that a type's name may have an embedded space, but then you have to put vertical bars

around the whole symbol (a la Common Lisp). Things are starting to get complicated, so let's

de�ne some shorter synonyms:

(define f |fire truck|)

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 63

(define g |national guard|)

(define humans (mob f g))

You can use the newly de�ned symbols f and g anywhere in place of the original type names.

The symbol humans is a list of types, and will be useful in �lling several propertys at once.

As with monsters, all these new units should be able to move:

(add humans acp-per-turn (1 6 2))

The speeds here are adjusted so that monsters can chase and run down (and presumably trample

to smithereens) mobs and guards, but �re trucks will be able to race away.

Also note the use of a three-element list that matches up with the three elements in the humans

list. This is a very useful features of GDL, and used heavily. It can also be a problem, since if you

add or remove elements from the list humans, every list that it is supposed to match up with also

has to change. Fortunately, Xconq will tell you if any lists do not match up because they are of

di�erent lengths.

We still need to de�ne some interaction, since monsters and humans can make faces at each

other, and get in each other's way, but otherwise cannot interact.

(add table hit-chance

(monster humans 50)

(humans monster (0 10 70))

)

This time we have to say \add table" because we've already de�ned the hit-chance table and

now just want to augment it.

As with the addition of properties, we can use a list in place of a single type.

Last but not least, we need a scorekeeper to say how winning and losing will happen. This is a

simple(-minded?) game, so a standard type will be su�cient:

(scorekeeper (do last-side-wins))

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 64

The do property of a scorekeeper may include some rather elaborate tests, but all we want to is

to say that the last side left standing should be the winner, and the symbol last-side-wins does

just that.

There might be a bit of a problem with this in practice, since in order to win, the monster has

to stomp on all the humans, including �re trucks. But �re trucks can always outrun the monster,

and cannot attack it directly either, which leads to a stalemate. You can �x this by zeroing the

point value of �re trucks:

(add f point-value 0)

Now, when all the mobs and guards have been stomped, the monster wins automatically, no

matter how many �re trucks are left.

3.1.5 The Scenario

As it now stands, your game design requires Xconq to generate all kinds of stu� randomly, such

as the initial set of units, terrain, and so forth. However, we are doing a monster movie, so random

combinations of monsters and people and terrain don't usually make sense. Instead of trying to

de�ne a \reasonable" random setup, we should de�ne a scenario, either by starting a random game,

modifying, and saving it, or by text editing. Since online scenario creation is hard to describe in

the manual, let's do it with GDL instead.

To de�ne a scenario, we generally need three things: sides, units, and terrain. Now the basic

monster movie idea puts one monster up against a bunch of people acting together, so that suggests

two sides:

(side 1)

(side 2 (name "Tokyo") (adjective "Japanese"))

The 1 and 2 identify the two sides uniquely, since we'll have to match units up with them in a

moment. The side that plays the monster is really a convenience; players should just be aware of

the one monster unit, so we don't need any sort of names. The other side has many units, which

should be quali�ed as "Japanese", and the side as a whole really represents the city of Tokyo, so

use that for the side's name.

Now for the units:

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 65

(unit monster (s 1) (n "Godzilla"))

(unit firetruck (s 2))

(unit firetruck (s 2))

(building 9 10 2)

(define b building) ; abbreviate for compactness' sake

(b 10 10 2)

(b 11 10 2 (n "K-Mart"))

(b 12 12 2 (n "Tokyo Hilton"))

(b 13 12 2 (n "Hideyoshi's Rice Farm"))

(b 14 12 2 (n "Apple Japan"))

;; ... need lots of buildings ...

This example shows two syntaxes for de�ning units: the �rst is introduced by the symbol unit

and requires only a unit type (or an id, see the de�nition in xxx), while the second is introduced

by the unit type name itself and requires a position and side. The second form is more compact

and thus suitable for setting up large numbers of units, while the �rst form is more
exible, and

can be used to modify an already-created unit. In both cases, the required data may be followed

by optional properties in the usual way.

Also, since the word \building" is a little longwinded, I de�ned the symbol \b" to evaluate

to \building". GDL has very few prede�ned variables, so you can use almost anything, including

weird stu� like \&" and \=". Property names like s and n are NOT prede�ned variables, so you

can use those too if you like.

At this point, you should have a basic game scenario, with one player being Godzilla, and the

other trying to keep it from running amuck and
attening all of Tokyo. Have fun!

You can enhance this scenario in all kinds of ways, depending on how ambitious you want to

get. Given the basic silliness of the premise, though, it would be more worthwhile to enhance the

silliness and speed up the pace, rather than to add features and details. For instance, name the

buildings after all the laughingstock places you know of in your own town.

To see where you could go with this, look at the library's monster game and its tokyo scenario,

which include �res, di�erent kinds of terrain, and other goodies.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 66

3.2 Types

Types are the foundation of all Xconq game designs. Types are like classes in object-oriented

programming but simpler; each set of types is �xed and used only in a particular way by Xconq. A

game design de�nes types of units, materials, and terrain. Only materials are optional; every game

design must de�ne at least one unit type and one terrain type.

Types in GDL are simple compared to most other languages. There is no inheritance, no sub-

typing, no coercions or conversions. This is not a real limitation, since game designs are usually

too small to make e�ective use of any sort of inheritance. Also, game design is an exacting activity;

inheritance is often di�cult to control satisfactorily. You can use lists of types to simulate inher-

itance as necessary; this is actually more
exible, because you can have any number of lists with

any set of types in each. It may not seem as e�cient, but GDL is only used during startup, and

is almost entirely array- and struct-based during the game. (A few places, such as scorekeeping,

examine GDL forms during play.)

Types are de�ned one at a time in the game module �le. Each type gets an index from 0 on

up, in order of the type's appearance in the �le. Although this is not normally visible to you or

to the player, some error messages and other places will make reference to raw type indices. Each

category of type - unit, material, and terrain is indexed individually.

3.2.1 Unit Types

Unit types de�ne what the players get to play with. Unit types can include almost anything;

people, buildings, airplanes, monsters, arrows, boulders, you name it.

The basic form of a unit type de�nition is so:

(unit-type type-name (property-name property-value) . . .)

The appearance of this form in a �le means you are adding a new and distinct type, which has

no relation to any other types de�ned before and after this one. The type-name must be a unique

symbol, such as building or |fire truck|. (Note that you can set things up so that players never

see the type-name anywhere, so don't worry if your preferred name con
icts with something else,

just choose another name.) The property-name and property-value pairs are entirely optional.

They can always be de�ned or changed later in the �le. There is little advantage one way or

another.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 67

This particular syntax - keyword followed by name or other identi�er followed by property/value

pairs - will be used for most GDL de�nitions.

The number of unit types is limited. The exact limit depends on the implementation, but is

guaranteed to be at least 127. This is a huge number of types in practice; the only situations where

this might be needed would be a fantasy-type game with many types of items and monsters. For

empire-building games, 8-16 unit types is far more reasonable. Keep in mind that with lots of

types, players have more to keep track of, internal data structures will be larger and take longer to

work with, and designing the game will take more time and energy. Consider also that Xconq gives

you a lot of properties that you can set individually for each unit type, so that when other game

systems might require a distinct types, Xconq lets you use the same type with di�erent propertys.

For instance, in a fantasy game you wouldn't need to de�ne \young dragons" and \old dragons"

as distinct types, instead you can vary the hit points or experience of a generic \dragon" type.

3.2.2 Terrain Types

Each cell in the world has a terrain type. This type should be thought of as the predominant

contents of the cell, whether it be open ground, forest, city streets, or the vacuum of deep space.

The type can be anything you want, and should be adapted to �t the game you're designing. Sure,

the real world has swamps, but if you're designing a game set in the Sahara, don't bother de�ning

a swamp terrain type. Also, the type doesn't carry any preconceptions about elevation or climate,

so you can have swamps at 20,000 feet just as easily as at sea level.

The limit on the number of terrain types is large (up to about 127, depending on the imple-

mentation), but in practice, 6-10 types o�er variety without being confusing. Ideally, several of

those types will be uncommon in the world, so that map displays will consist mostly of 3-4 types

of terrain.

Some game designs involve entities that are very large and do not move around. Such entities

could plausibly be represented either as non-moving units or as a distinct terrain type. To make

the right choice, you need to consider the special characteristics you want to implement. Terrain

cannot (usually) be changed during the game, nor can it be moved, but units can be damaged or

belong to di�erent sides. A realistic example of this choice occurs in the monster game - should a

destroyed building become a \rubble-pile" unit or should the building stand on rubble-pile terrain

and vanish when it is destroyed? Both choices are plausible; if the rubble-pile is a unit, then the

original building is then on top of an empty city block, and after the building is destroyed, the

rubble-pile unit can itself be cleaned o�, exposing the empty city block again. However, you have

to decide whether the rubble-pile unit belongs to a side, how it interacts with other units, and so

forth. Rubble-pile terrain is simpler, but the players then get descriptions of brand-new buildings

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 68

sitting in the midst of rubble-piles, which is confusing. This is a case where there is no \right"

answer.

3.2.3 Material Types

Material types are the simplest to de�ne. They have only a few properties of their own; most

of the time they just index tables along with the other types. Materials do not act on their own

in any way; instead, players manipulate materials as part of doing other actions. For instance, you

can specify that movement, combat, and even a unit's very survival depends on having a supply of

some material, or that some material is ammo and consumed gradually when �ghting.

The use of materials is pretty much up to you. You don't have to de�ne any material types

at all, and game designs with materials are usually more complicated. However, the increase in

realism is often worth it; with materials you can limit player activity and/or make some actions

more \expensive" than others.

As with the other types, you can de�ne up to about 127 material types, but that would be

enough to model the entire global economy accurately! (and take all week to compute a single

turn...) 1-3 types is reasonable.

3.2.4 Static Relationships Between Types

The next sections describe the \static" relationships between types of objects, meaning those

relations which must always hold, both in the initial setup and throughout a game.

3.2.5 Stacking

By default, Xconq allows only one unit in each cell at a time. This has the advantage of

simplicity, but also makes some bizarre situations, such as the ability of a merchant ship to prevent

an airplane from passing overhead or a submarine from passing underneath.

To �x this, you can allow players to stack several units in the same cell. This is governed by

several tables, which give you control over which and how many of each type can stack together

in which kinds of terrain. The basic idea is that a cell has a certain amount of room for units,

as speci�ed by the terrain type property capacity, and each unit has a certain size in the cell,

according to the table unit-size-in-terrain.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 69

(add (plains canyons) capacity (10 2))

(table unit-size-in-terrain

((indians town) plains (1 5))

((indians town) canyons (1 2))

)

In this example, a player can �t 10 indians or 2 towns into a plains cell, or else one town and 5

indians, while canyons allow only 2 indians or one town.

In addition, some unit types may be able to count on a terrain type providing a guaranteed

place; for this, you can use the unit/terrain table terrain-capacity-x. This table (which defaults

to 0) allows the speci�ed number of units of each type to be in each type of terrain, irrespective of

who else is there. For instance, a space station could be given space via

(table terrain-capacity-x (space-station t* 10000))

So while units on the ground are piling together and being constrained by capacity, space stations

overhead can stack together freely (space is pretty big, after all).

3.2.6 Occupants and Transports

Occupants and transports work similarly to stacking in terrain; there is both a specialized

capacity and a generic capacity that units' sizes count against.

(add (transport carrier) capacity (8 4))

(table unit-size-as-occupant

((infantry armor) transport (1 2))

((fighter bomber) carrier (1 4))

)

(table unit-capacity-x

(carrier fighter 4)

)

It may be that all the di�erent sizes interact so that you can't prevent huge numbers of small

units being able to occupy a single transport. To �x this, use occupants-max.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 70

Transport is a physical relationship, so for instance one cannot use transports to de�ne a convoy

whose acp-per-turn is determined by its slowest member. (This doesn't mean you can't de�ne a

convoy type, but you will have to pick an arbitrary speed for it.)

Watch out for unexpected side e�ects of setting the capacity but not the unit-size-as-

occupant! Since unit-size-as-occupant defaults to 1, then a unit with a nonzero capacity can

by default take on any other type as an occupant!

Also, don't let units carry others of their own type. Not only is this of doubtful meaning,

Xconq is not guaranteed to cope well with this situation, since it allows in�nite recursion in the

occupant-transport relation. Ditto for loops; \A can carry B which can carry C which can carry

A".

3.2.7 Hints on Types

It is tempting to try to de�ne independent sets of types, each in a separate module, and glue

them together somehow. However, this doesn't work well in practice, because in a game, the types

interact in unexpected ways. Suppose, for example, that you de�ne a set of airplane types that

you want to be generic enough to use with several di�erent games. The assessment of those types

may vary drastically from game to game; in one, airplanes are 100 times faster than any other sort

of unit, so that moving airplanes takes up 99% of game play, while in another, the same set of

airplane types are too weak to be of any interest to players.

There is a standard set of terrain types called "stdterr". This set has a mix of the types found

most useful for \Empire-type" games, and Earth-like percentages for random world generation.

3.3 Setting up a Game

You have a spectrum of options for how Xconq will set up a game based on your design. At the

one end, you can build a scenario that speci�es everything exactly, down to the last unit. Lest you

think this is too restrictive to be interesting, consider that this is how chess works... At the other

end of the spectrum, you can let Xconq manufacture everything, starting only with a handful of

numbers that you supply.

The next several sections describe the alternatives available for game setup. It is important

to understand what is possible, because in general the character of an Xconq game will depend

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 71

strongly on the initial setup, and players will be very angry (with you!) if they discover, several

hours into a hard-fought game, that they've been given a grossly unfair starting position.

3.4 Designing theWorld

The Xconq world/area is a two-dimensional grid of �xed shape and size. You can treat it as

representing part of a planet in space, and set up parameters simulating that, or just make it be

itself and not address the question of the surrounding context. The appropriate choice depends on

how much realism and complexity you need. Most computer games don't bother with this detail;

for instance, a game set in an underground dungeon doesn't usually need to compute daylight,

weather, or seasons. However, these same details may be very useful for games set outdoors.

3.4.1 World Shape and Size

Once you've decided whether the area is to be part of a planet or not, you can address the

question of size and shape. You have two choices for shape: hexagon and cylinder. (See the players

chapter for pictures of these.) The important thing for you as a designer is that the cylinder

wraps around, while the hexagon is bounded on all sides. One consequence is that games involving

pursuit will be quite di�erent; on a cylinder, the chase can go 'round and 'round forever, while on a

hexagon, a
eeing unit could be cornered. Cylinders have a disadvantage in that there is no obvious

\starting place" for coordinates, scrolling, etc, so there is a navigation and orientation problem for

players, especially if the world is randomly generated and not the familiar continents of the Earth.

In fact, players will often not even realize that a world is a cylinder and will assume that the edge

of the display is the edge of the world! To make a cylindrical area, set the circumference of the

world equal to the width of the area. Otherwise, the area will be handled as a hexagon.

You can choose either to set a �xed size using the area form, or allow players to set the actual

size via the world-size variant, in which case you can de�ne the allowable range of sizes.

Worlds need not be really large. Larger worlds are harder for players to manage, they take

longer to display, and can consume prodigious amounts of memory (since they are represented as

arrays internally, for speed). The ideal range of sizes depends primarily on the size and speed of

units. A 60x60 area in a game with units whose speed is 1 means that they will take 60 turns to

cross, while units with a speed of 20 take only 3 turns, so they make the world \feel smaller". As

another example, in the standard game, a 20x20 area allows player to come to grips quickly, but it

also means that each player's units might be within attack range right from the outset, which has

a drastic e�ect on strategy. For exploration-oriented games, larger worlds are more interesting.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 72

3.4.2 World Terrain

The best technique for designing the terrain of a world is to use the designer tools provided with

Xconq. The details of how these tools work depends on the interface, but in general they resemble

the tools found in paint programs. Some interfaces also give you the option of rescaling the map,

so that you can �ne-tune the size and positioning of the terrain.

Another technique is to write a program that translates data from another source (such as

NASA satellite data) into Xconq format. However, if you take a rectangular array of data and just

wrap an area (terrain ...)) form around it, then everything will appear to be tilting to the left.

To �x this, have your program map the cell at x, y in the rectangular array to x - y / 2, y before

writing. You must discard values whose new x coordinate is negative, or else wrap them around to

the right side of the area, although that is usually only reasonable for cylindrical areas.

The crudest technique is to try to build terrain by using a text editor. The coordinate system

is Cartesian oblique, with the y axis tilted to form a 60-degree angle with the x axis, so it can be

di�cult to relate typed-in characters to the �nal appearance. Landforms in the �le should appear

to be leaning to the left, if they are to appear upright during play. However, sometimes text editing

is necessary, for instance when you need to change every instance of a terrain type to something

else. (Incidentally, some of the large real-world maps in the library were produced by coding all

the terrain types from an atlas onto graph paper, typing them in, then �xing the tilt as described

above.)

Incidentally, areas should have some distinguishing terrain around the edges; this prevents player

confusion that sometimes happens when there is no other clue as to where the edge might be.

However, this is not enforced by Xconq, and you can put whatever you like along the edges.

Randomly generated worlds normally use the value of the global variable edge-terrain.

3.4.3 Synthesizing World Terrain

The random way to get terrain for a world is to use one of several synthesis methods built into

Xconq.

Totally random terrain is available via the synthesis method make-random-terrain. This just

randomly chooses a terrain type for each cell, using the weights in the occurrence property of

each type. An occurrence of 0 means that the type will never be placed anywhere. This method

produces a sort of speckly-looking world, and is better for testing than for actual play. Still, if you

have two types vacuum and solar-system, then a form like

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 73

(add (vacuum solar-system) occurrence (20 1))

will give you a nice star�eld for a space game.

The fractal world method make-fractal-percentile-terrain descends from the most vener-

able part of Xconq (it was once a piece of Atari Basic code). It uses a fractal algorithm along with

percentile-based terrain classi�cation to make realistic-looking worlds with terrain and elevations.

To use this method, you �rst specify how many, what size, and what height of blobs to splash

onto the world, and how many times to average cells with their neighbors. Then you specify the

subdivision of all the possible altitudes and moisture levels into di�erent kinds of terrain. For

instance, desert in the standard terrain ranges from sea level (alt-percentile-min = 70%) to

high elevations (alt-percentile-max = 93%) but only in the lowest percentiles of moisture (wet-

percentile-min = 0%, wet-percentile-max = 20%). It is important that all percentiles be

assigned to some terrain type, or the map generator will complain and subsitute terrain type 0 (the

�rst-de�ned type); when designing terrain percentiles, it is helpful to make a chart with altitude

percentiles 0-100 on one axis and moisture percentiles on the other. Note that overlapping on this

chart is OK, and the terrain generator will pick the lowest-numbered terrain. Also note that you

don't have to include every terrain type.

The alt numbers are also used to compute elevations for games that need them, but the wet

numbers need not have anything to do with water at all; they could just as easily represent smog

levels or vegetation densities. If you only want to use one of the two layers, just set the percentiles

for the other to be 0 - 100 for all terrain types.

[should have an example]

The method make-maze-terrain produces a maze consisting of a mix of \solid", \passageway",

and \room" terrain. It uses the maze-room-density and maze-passage-density properties of

each terrain type to decide how much of each to use for rooms and passages. The method �rst

does random terrain generation, using the occurrence property to decide how much of each terrain

to put down (remember that occurrence defaults to 1 for all terrain types). Then it carves out

rooms, and passageways between them. The passages and rooms are guaranteed to be completely

connected.

The method make-earth-like-terrain attempts to model the natural processes and generate

terrain as similar as possible to what is observed on Earth today.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 74

You should note that at least one method for synthesizing terrain must be available, unless you

can guarantee that terrain will be loaded from a �le. The following subsections describe optional

additional synthesis methods that you can include.

3.4.4 Rivers

You can use the make-rivers method to add rivers to the world. Rivers are basically water

features that depend on terrain elevations, so they won't be generated unless both a river terrain

type (either border or connection) and elevation data is available. You get them by specifying a

nonzero chance for some type of terrain to be the location of a headwater (river-chance).

Xconq doesn't have any intuition about the behavior of water; it will happily trace rivers all the

the way down to the bottom of the sea. Use the liquid property to tell make-rivers what types

that rivers cannot touch. The method still traces the river's course, and resumes modifying terrain

when possible, which means that the river can appear as both the inlet and outlet from a lake.

3.4.5 Roads

The make-roads method is a fairly generic method. It just picks pairs of units randomly and

runs a road between them, attempting to share road segments and route through favorable terrain.

Although simplistic, the results look pretty good.

You can make short bridges by tweaking the road density appropriately. Just allow roads from

land to water, and water to land, but not from water to water.

Note that this method is only useful if there are actually units for the roads to connect.

3.4.6 Independent Units

For many games, it is useful to have independent units scattered randomly across the world. For

instance, gold mines and treasure hoards would be good for an exploration game, and independent

castles for a medieval game. You can set this up with the make-independent-units method.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 75

3.5 Altitudes and Elevations

Xconq is basically a 2-dimensional game, but you can emulate a third dimension by de�ning

elevations for terrain and altitudes for units above and below the terrain.

The main use of altitudes is to control interactions between certain kinds of units, particularly

aircraft. For instance, a high-altitude bomber should be able to pass over a ship and under a

satellite with impunity. In general, you de�ne the \operating altitudes" of a unit, so in the example

above, you could say that a ship is always at the surface, bombers operate at 1-10 km, and satellites

at 100-10,000 km. If a unit has more than one operating level, then it can move up and down by

normal movement actions.

Also, most details such as speed and material consumption are the same for a unit at any

altitude. (Yes, such things vary in real life, but the e�ects are usually minor within the unit's

normal operating range.)

Altitudes have a signi�cant e�ect on combat. A unit at some altitude can only attack units at a

speci�c range of altitudes up and down. Using the example again, you could de�ne �ghter aircraft

to operate at 0-20km and be able to attack up and down 5km, while bombers can attack up to

10km down (i.e. down to the ground), but not up. Satellites remain invulnerable.

All this applies equally to units underground and undersea.

[need info about setting up other layers]

3.6 Designing the Sides

Sides represent the players in a game. They also serve as a repository of information shared by

units, such as technology and knowledge of the world.

You should �rst decide how much about the sides will be prede�ned. If you're doing Eastern

Front scenarios, it's very easy; you have Russians and Germans and that's it. If you're doing

a science-�ction empire-building free-for-all, you may not have to specify anything more than a

random side name generator.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 76

3.6.1 Prede�ned Sides

For scenarios and similarly-restrictive games, the game design should create the sides directly,

as in this example:

(side (name "Germany") ... (colors "black,gray") ...)

(side (name "Russia") ... (colors "red") ...)

Since the initialization machinery allows matching any player with any side, you can get away

with being really vague. This will create four sides but not say anything about them:

(side)

(side)

(side)

(side)

If you're going to have prede�ned units on each side, then you should add an id to each side:

(side 1 (name "Germany") ... (colors "black,gray") ...)

(side 2 (name "Russia") ... (colors "red") ...)

Instead of 1 and 2, you can also use, say, ge and ru; ids can be either symbols or numbers.

3.6.2 Side Library

If your game design does not prede�ne all the sides, you can de�ne a side library using the

side-library variable. Basically the library is a weighted list of collections of side properties,

each formatted as a side de�nition. Xconq will use this library for any player that is allowed in the

game but who does not have a side already, and select a side with a probability determined by the

weights. Each item in the library will be used up to a limit that can be speci�ed with each item;

if the library has been exhausted before all the sides have been created, then the extra sides will

just be assigned general defaults for their properties.

The side library here makes futuristic sides for players, making two of the sides most likely, but

allowing others as well:

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 77

(set side-library '(

(10 (name "Federation") (adjective "Federation") (class "fed"))

(10 (name "Klingon Empire") (noun "Klingon") (class "klingon"))

(5 (noun "Romulan") (class "romulan"))

((noun "Ferengi") (class "fed"))

((noun "Vulcan") (class "fed"))

))

Note that if the game design limits certain unit types to certain sides, the choice of sides will

be more than just a cosmetic issue.

3.6.3 Limits on Sides

So that you can put upper and lower bounds on the number of sides in your game, GDL includes

the variables sides-min and sides-max. As you might expect, every game design must allow at

least one side. The upper limit on sides depends on the implementation, but is at least 7. Large

numbers of sides can make a player's life very complicated, not to mention consuming vast quantities

of memory, so you should try to limit the number of sides as much as possible.

Another important limit is based on the notion of side classes. Each side can have a side class,

and multiple sides can belong to the same class. For instance, sides named "Hyperborean" and

"Germanic" could both have class "barbarian". The value of side classes is that unit types have

a property possible-sides that limits which side class(es) a type can belong to. This is very

important for any game in which di�erent players should have fundamentally di�erent sorts of

units. To continue the barbarians example, it is basically impossible for any barbarian side to

have even one Roman legion, whether by construction, capture, or even surrender. So you can do

something like

(add legion possible-sides "roman")

...

(side 1 (name "Rome") (class "roman"))

(side 2 (name "Germania") (class "barbarian"))

(side 3 (name "Hyperborea") (class "barbarian"))

and ensure that Roman legions are always Roman.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 78

3.6.4 Hints on Sides

Note that players tend to identify with the sides they're playing, so a game should allow for

as much personalization as possible. On the other hand, some scenarios derive part of their
avor

from prede�nitions. For instance, a scenario with sides named \German" and \Russian", with

appropriate colors and emblems, doesn't have quite the same feel when players rename them to

\Subgenii" and \Simpsons".

A side can have a huge amount of state data, such as the current view. This rarely needs to

be included in its entirety; synthesis methods will usually su�ce to set view data correctly. Since

total security is impossible with a prede�ned world, setting a side to have only a partial view won't

necessarily be useful to keep players from knowing what that world really looks like.

3.7 Designing the Units

Once you've decided how to handle sides in your game, you can move on to the initial unit

setup. Initial unit setup is very important, since it has a major bearing on how the rest of the game

will go, and can be done in a number of di�erent ways.

3.7.1 Prede�ned Units

GDL allows you to de�ne everything about every starting unit in the game. This is a powerful

approach, but requires much preparation. An advantage of prede�ned units is that there are no

unpleasant surprises. For instance, suppose you designed an empire game with ships and cities,

but a random setup leaves some players entirely landlocked. Not only will those players be very

unhappy, they might come looking for you before they've calmed down!

Asking for initial units is pretty easy, you can either type them into a �le or create them directly,

using the appropriate designer tool in a game.

(city)

(city 11 12 1)

(city (n "Brigadoon"))

(city (@ 10 10) (n "New York"))

(city (@ 20 10) (n "London") (hp 22))

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 79

The only info that you absolutely have to supply is the unit's type. If the position is missing,

the unit will be placed at a random location. If the side number/name is missing, the unit will be

independent or on the �rst possible side.

While the type, position, and side of units is important, exact values of the other properties are

rarely important for a scenario. Also, a unit with fewer �lled-in properties can be used in di�erent

games. For instance, a list of the present-day major cities worldwide really needs only name and

location for each; the game design can �ll in everything else. One way to do this would be to set

up an appropriate unit-defaults just before including the module.

To make units start inside transports, you need to specify the t# property for the occupant,

and have its value be the id number or name of some other unit. Your players may get an error

message if the occupant is not of an allowed type for the transport to hold.

3.7.2 Making Countries

Despite the advantages of prede�ning initial units, this doesn't help when you want variable

groups of units to appear in a randomly-generated world. Instead, you should use the make-

countries synthesis method. The basic idea is that the method picks a good location for each

side's country, scatters an initial set of units around that location, then possibly grows the country

outwards. You can do anything from small widely-separated countries to an interlocking nightmare

resembling pre-Bismarck Germany. Because of this, and because of the requirement that this

method generate random setups that are as fair as possible, you have a great many parameters to

work with. These parameters should be tuned carefully - you will probably need to generate and

study lots of initial setups, especially if your parameters constrain the countries very tightly; the

method cannot backtrack to �x a poor combination of placements.

The �rst step in country generation is to select a location for each side's country. The location

is a point that is the \center" of the country (the exact value will be unimportant to players,

and is not used outside this method). The constraints are that the center of each country is

farther than country-separation-min from the center of every other country, that the center is

within country-separation-max of at least one other country, and that the given initial area of

the country (as de�ned by country-radius-min) includes numbers of cells of each terrain type

bounded by country-terrain-min and country-terrain-max.

The reason for the separation constraints is that having countries too close together or too far

apart can create serious problems. Consider the poor soul who gets tightly sandwiched between

two enemies, thus becoming lunchmeat, ha ha, or the not-quite-so-poor-but-still-unlucky player

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 80

who ends up on the wrong side of a very large world. (Keep in mind that your players may ask for

a much larger world than you were thinking of when you designed the game.)

The terrain constraints help you put the country in a reasonable mix of terrain. For instance, if

you want to ensure that your countries include some land, but be on the coast rather than inland,

then you should say that the country must have a minimum of 1 sea cell and 1 land cell. (In

practice, the values should be higher, so you don't get small islands being used as entire countries

and lakes being considered the ocean.) Keep in mind that these constraints may be impossible

to satisfy, for instance if a particular world does not have enough of the sort of terrain that is

being required in a country. If the basic placement constraints fail, Xconq will just pick a random

location, warn about it, and then leave it up to the players to decide on whether to play the game

\as it lies".

;;; Keep countries close together, but not too close.

(set country-separation-min 20)

(set country-separation-max 25)

Once Xconq has decided on locations for each country, it then places the initial stock of units.

You de�ne this initial stock via the unit properties start-with and independent-near-start.

The start-with units start out belonging to the side, while the independent-near-start units

are independent. The locations of these units are random within country-radius-min of the

center, but are weighted according to the table favored-terrain. This table is very important; it

is the percent chance that a unit of a given type will be placed in terrain of the given type. 100

is guaranteed to work, and 0 is an absolute prohibition. Since make-countries tries repeatedly to

place each start-with unit until it succeeds, then even terrain with a favored-terrain value of

only 10% will get used if there is no other choice, so the table a�ects the distribution of units rather

than the number that get placed. If a starting unit cannot be placed on any available terrain, but

can be an occupant, then Xconq will attempt to put it inside some unit already present. This is a

good way to begin a game with aircraft at airports rather than in the air.

The upshot is that all this will do a reasonable layout if the parameters are set reasonably. If,

however, favored-terrain is never > 0 for the start-with units and the country terrain, but

there is some other terrain type for which this would work, Xconq will change the terrain. If even

that doesn't work, the method will fail [or just complain?].

This example is from the standard Xconq game:

(set country-radius-min 3)

(add city start-with 1)

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 81

(add town independent-near-start 5)

(table favored-terrain 0

((town city) plains 100)

(town (desert forest mountains) (20 30 20))

)

The net e�ect is to give each player one city outright and 5 towns nearby. Although created

independent, these towns can be easily taken over right at the beginning of a game, so they are

a kind of \warmup" (like the pushing of pawns at the beginning of a chess game). The favored-

terrain table allows cities to appear only in plains, while giving more options to towns, since they

can appear in deserts, forests, and mountains. Even so, towns are 5 times more likely to be in

plains, which is reasonable.

The optional last step in country generation is to grow the countries outwards from the initial

area. This is basically a simple simulation of the historical forces that give countries their variety of

shapes. The algorithm works by deciding whether to add to the country each cell at each distance

from the country's center. The chance depends on the terrain type and whether the cell has already

been given to another country. Once a cell has been given to the country, then the method decides

whether to add a sided or independent unit to the cell, or whether to change the side of an existing

unit. Country growth stops when either the absolute maximum radius has been reached, or too

few cells have been added to the country, whichever comes �rst.

This example is from one of the variants of the standard game:

(game-module "standard"

...

(variants

...

("Large Countries" eval

(set country-radius-max 100)

)

))

The resulting e�ect is to make all the countries border on each directly.

3.8 Setup Miscellany

This section describes random things.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 82

3.8.1 Technology

Technology, or tech for short, is useful when technological development is important to a game.

There are several ways to use it.

One use of tech is to track the results of research. You do this by setting the initial tech of a

side to (say) 0, then requiring a certain tech (say 60) in order to build a desired type. If a research

action adds 1 to a side's tech, then it will take 60 research actions to gain the necessary level. The

number of turns, of course, depending on how many actions the researcher can do each turn, and

how many researchers are available. So for instance, 10 researching units results in the work being

done in 6 turns instead. You can limit this schedule acceleration by setting tech-per-turn-max.

Another use of tech is to di�erentiate sides. Suppose you want to do a game involving earthlings

and space aliens. The aliens can have satellites overhead that earthlings don't even know are there,

they have equipment earthlings couldn't use even if they were able to capture it. However, earth

scientists might learn something from it. To do all this, use tech-to-see and friends.

Tech is fundamentally tied to unit types. However, many games have a number of unit types

that share technology. For instance, advances in bomber technology usually lead to advances in

�ghter and surveillance aircraft. The tech-crossover table is available for this purpose.

3.8.2 Creating Self-Units

Normally a player runs the side as a whole, and all the units on that side are disposable and

interchangeable. However, you require one unit to represent the player personally among the units

of the player's side; this unit is the self-unit. What this means is that if that unit is captured or

dies, the player loses the game instantly. All the other units on the side will behave normally as for

losing, either going over to the side that captured the player, becoming independent, or disbanding.

The idea is to increase the player's motivation for self-preservation. This is useful to introduce

a risk of capture, assassination, and so forth. It also prevents bizarre and unrealistic strategies in

some games.

For instance, it sometimes happens in empire-building games that players end up switching

countries, because each captured another's country and neglected to defend their own. If each

player got one capital city, and that city were to be a self-unit, then the owner would have to

defend it at all costs!

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 83

To make this happen, you could do something like this:

(set self-unit-required true)

(add capital-city can-be-self true)

(add capital-city start-with 1)

3.9 Units and Actions

Players can do all kinds of things with their units. They can push the units around, they can

make units build things, they can get into �ghts, or they can just let them sit around. You as the

designer decide which kinds of things make sense in your game, then set up the action parameters

appropriately. Is moving through swamps going to be slow? Can a small town build any kind of

ship, or just small ones? How often can Godzilla breathe �re?

Now, what the players work with is the interface, which can do all kinds of intelligent things {

whatever makes sense for that interface. However, no matter what the interface, no matter what

kind of play automation, player input eventually breaks down into unit actions. The set of action

types is prede�ned and can't be changed. They are also very primitive. Each action takes a number

of arguments, such as the type of unit to build or the location to move to, the action just happens

and either succeeds or fails on the spot. There are no actions that take longer than one turn to

complete, and a unit can perform only one action at a time. This may seem horribly restrictive,

but actions are just the low-level building blocks; players rarely see actions directly. You have to

be aware of them because the game design speci�es which unit types are capable of which actions.

Each Xconq interface will adjust itself to disallow input that would result in types of actions that

you have prohibited.

The number of actions that a unit can do in one turn is limited by its action points. A unit

with zero action points cannot do anything at all. A unit with lots of action points can do lots

of actions, unless each action costs many action points. You can de�ne the action point cost of

each type of action for each unit type. In some cases, the cost will also depend on the action's

arguments.

Acp is actually a little like a bank account, since by not doing anything for awhile, a unit can

accumulate extra acp (up to acp-max), and it can go into debt temporarily, down to acp-min

(which may be a negative value). A unit in \action debt" at the beginning of a turn cannot move

or do anything else, and must wait for a turn when its acp goes positive again. This can be a simple

way to implement both fatigued units and units that can do more if they plan for it.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 84

Actions always include both an actor and an object. The actor is the brains, and that is whose

acp gets used up, but the object has the action actually happen to it. This is so animate units (like

humans) can manipulate inanimate units (like swords). You enable this by setting the acp of the

inanimate to zero, but requiring nonzero acp in the various acp-to- tables.

In most cases, the actor and actee are the same unit.

3.10 Movement of Units

Movement is the most important action type. There are actually two distinct types of actions;

one to enter a cell, and one to enter a unit.

Each unit has a speed which is determined at the beginning of the turn and determines how

many cells it can enter during the turn. However, terrain, borders, and other obstacles can consume

extra movement points.

3.10.1 Unit Speed

Units have a base speed speed which is the ratio of mp to acp. You can set damaged units to

move more slowly. You can also allow occupants to add to the speed, up to the speed-max limit.

You can de�ne wind-a�ected units by de�ning speed in each direction (max-speed only, do

others proportionally). Would need 4 distinct mp costs plus a formula to relate to wind strength.

Wind speed de�ned as "how far a particle of air moves in a turn". Unit examples include balloons,

dirigibles, sailing ships,
oating cities.

3.10.2 Movement Costs

Typically the cell entry cost will be the most useful to adjust, although the departure cost can

be useful in representing units mired in jungle mud and taking a long time to escape onto clear

terrain.

Be aware that complicated entry/exit costs are confusing to players, and AIs may not take them

into account very well either. Using free-mp helps players use up all their acp.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 85

3.10.3 Entering Transports

Di�erent kinds of transports have di�erent ways for units to get on and o�. For instance, ships

can dock, or use their boats to enable land units to get on and o�. The tables ferry-on-entry

and ferry-on-departure specify how much terrain units will have to cross on their own.

[example]

Observe that enter/leave costs can be used to make one-way trips. For instance, paratroops

jumping out of a plane should be able to leave cheaply, but have an entry cost so high that they

can only reboard in a later turn.

3.10.4 Border Slides

One of the problems with Xconq borders and connections is that neither works exactly like a sea

strait. Consider the Straits of Gibraltar. They are so narrow that one can see the other side, but

nevertheless impose a formidable barrier to landlubbers. At the same time, ships can pass through

readily, if not secretly. If cells in the world are 60 miles across, then making an all-sea cell is a gross

exaggeration. However, adding a water border only prevents both land and sea movement! To get

around all this, Xconq allows a special kind of move called a \border slide". Basically, if both the

destination cell and the border whose endpoints touch the start and end cells are allowable terrain

for a unit, then the unit can move to the destination cell in one move. However, it incurs a special

cost in addition to the normal entry and leave costs for the terrain in the two cells (but not the

border crossing cost, since the border is not being crossed, exactly). This cost is in the table mp-

to-traverse. Border sliding should usually be somewhat expensive, both because of the distance

(the unit ends up two cells away after only one move), and because of the real-life di�culties of

passing through a narrow strait. Note that border sliding does not escape the units on either side

of the border, since the unit doing the sliding will still be adjacent to the cells on each side of the

border it slid through.

3.10.5 Leaving the Area

This feature can be useful in allowing a non-disbandable unit type to escape capture or otherwise

retire from action.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 86

3.10.6 Free Moves

This is most useful in emulating some board games, or to prevent clever players from exploiting

a mess of move costs. The default of -1 is the most playable, since player will always be able to

use all of their mp. Otherwise, there may be situations in which a unit has a few acp left, but not

enough to go anywhere, and so they end up being wasted. The free move does not actually get

subtracted from the unit's acp, it just doesn't let lack of acp forbid the move.

3.10.7 Zone of Control

Sometimes a unit can by its presence alone a�ect the movement of unfriendly units in the

vicinity, perhaps by requiring them to hide or to move carefully in order to pass by, or even to

prevent entry altogether. This is called the \zone of control" or ZOC.

Exerting a ZOC requires no action, nor any particular capability on on the part of the unit

exerting the ZOC. For instance, a toothless fort could still cause raiders to sneak by carefully (at

least if they didn't know that it was toothless).

3.11 Unit Construction

Construction is very important to empire-building and similar strategic games. The construction

of a unit may involve as many as four di�erent kinds of actions. This is so you can make construction

be an expensive long-term process.

The basic construction is unit creation. A player might have to do research and toolup actions

in order to prepare for creation, and might also have to do completion actions, if the created unit

is not ready to use.

Normally the interface will just have a single "Build <type>" command, which then results in a

task that issues appropriate actions, so players don't necessarily see all these di�erent actions.

3.11.1 Researching

Some types of units may be relatively easy to build, once you know how, but at the same

time that type totally changes the balance of the game. The atomic bomb in WWII is the classic

example; once it became available, everything changed.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 87

To allow research, set acp-to-research to 1 or more.

3.11.2 Tooling Up

Toolup costs are what you use to represent the overhead of changing construction. Quite often

it does not need to be set. Its primary use is to encourage players to commit to grand strategy

once chosen, because the cost of changing would be prohibitive.

3.11.3 Creation

You enable creation of new units by setting acp-to-create to 1 or more. The location of the

newly created unit will depend on both the types involved and how the interface works, since both

create-in and create-at actions are available. For instance, the new unit immediately takes up

space, so if creating unit is already full, then the interface should have issued a create-at action to

put the new unit outside the creator but still stacked in the same cell. If this is still too restrictive,

and you want to allow players to create units in nearby cells, you can set create-range to values

higher than the default of 0.

In order to represent the material costs of creation, you can set a minimum requirement, via

material-to-create, and an amount to be consumed, via consumption-on-creation. You could

think of material-to-create as representing catalysts or work force, while consumption-on-

creation is the raw material that becomes part of the new unit.

Finally, you can set the supply-on-creation to have new material created and given to the

new unit. This is useful for abstract materials (such as \enthusiasm") that are somehow ubiquitous.

You should be careful with this one, because if the new material is transferrable between units,

then players could collect a stockpile of the material by creating units, stealing their supply, and

never �nishing them.

3.11.4 Completion

By default, newly created units are complete and ready-to-use. This is rarely a good idea in a

game design, since even 1 acp-per-turn creators can then create another brand-new unit on each

turn. If you're going to allow that, then you should include something else to keep players from

being swamped by overpopulation. You can set high accident or attrition rates, make creation

require scarce materials, or make the creators be scarce.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 88

The best way to slow down unit creation is to create incomplete units and then require build

actions to �nish them. Completeness is de�ned in terms of completeness points (cp) that you can

set for each type. A build action then just adds to completeness points. Incomplete units do in

fact exist as units, so for instance they can be captured and completed by another side.

As with creation, you have to set acp-to-build to 1 or more just to enable build actions.

In order to regulate the rate of completion, you have to set the cp-max of the unit types being

constructed, which de�nes the point at which the unit will be complete, and then �ll in cp-on-

creation and cp-per-build. The most straightforward approach is to set cp-max to be the

number of turns you want to have between each unit being constructed, then let cp-on-creation

and cp-per-build both be 1.

You can set build-range so that several units can cooperate to accelerate construction of a

unit. There are no maximum rate limits set on this, but it's unlikely that players will ever be able

to achieve much acceleration, because of the limit on the distance between the builder and the unit.

For instance, the default range of 0 implies that multiple builders of a unit have to be in the same

cell, which may in turn be constrained by stacking limits.

As with creation, you can also set values in material-to-build and consumption-per-build

to govern material requirements and usage.

You can also allow units to complete themselves. For instance, large ships often use part of their

soon-to-be crew to help �nish the last stages of �tting out. You set this up via cp-to-self-build

and cp-per-self-build. Since incomplete units are incapable of doing any actions, this is a totally

automatic process that happens at the beginning of each turn. Self-building and normal building

can proceed simultaneously, so you can use this to accelerate the �nal stages of construction.

Finally, newly completed units can have materials created for them, as de�ned by supply-on-

creation.

3.11.5 Repair

Players' units will inevitably become damaged, whether in combat, from accidents, or from other

causes.

There are two ways that units recover hp; either automatically, as de�ned by hp-recovery, or

by the explicit action repair. Automatic recovery is good for that part of damage that a unit can

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 89

�x just by the passage of time. It's always good for playability, since a player just needs to \rest"

the unit in order for it to get better.

On the other hand, the decision to repair may need to be a di�cult one, and impact both tactical

and strategic planning. For instance, a badly damaged battleship can choose to go on �ghting and

risk being sunk, or withdraw for repairs and perhaps jeopardize the campaign it is supporting.

In such cases, you can allow explicit repair actions, via the table acp-to-repair. You can set

the repair rate via hp-per-repair. You can also specify how healthy the repairer must be, via

hp-to-repair. Units can repair themselves.

3.12 Combat Actions

Not all games require �ghting. Races and exploration can be lots of fun, and don't require

players to be bashing each other. However, the excitement of most Xconq games derives from the

chances of going up against an opponent directly.

Combat includes �ve distinct action types that a player may choose from, not counting deto-

nation, and you specify the characteristics of each. \Attack" is hand-to-hand with another unit,

\capture" attempts to change the side without damaging, \�re-at" hits a unit without getting

entangled, while \�re-into" hits everything in a targeted cell. Finally, \overrun" is an attempt to

occupy a cell, doing whatever combination of attack, capture, and movement is necessary.

To specify what kinds of battles are possible, you begin by setting the hit-chance of some

unit vs another unit to any value greater than zero. A hit probability of zero completely disallows

attack. A hit probability of 100 is a guaranteed hit. In practice, you will probably need to specify

most hit probabilities individually.

[describe mods to hit prob?]

Next you need to set the damage done by a hit. The default value is 1 hp, which is a good

starting place but not always particularly realistic.

[describe variation parms]

As usual, you can de�ne the action point cost of combat, via acp-to-attack and acp-to-

defend. The use of separate tables for attacker and defender allows for some extra
exibility.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 90

This is important, because sometimes you want to allow combat to keep a defender busy and soak

up its acp, while at other times attempts to engage in combat should be shrugged o�. Consider

battleships vs infantry; although combat between the two rarely causes much damage, an attack

by a battleship will cause the infantry to keep their heads down, and preventing them from doing

much else, while the return ri
e �re is unlikely to disturb the battleship much!

Describing simple hit probabilities and damage is oftentimes su�cient for a game. It's simple;

players can learn the numbers by heart. It's more e�cient, because there's no need to manage

lots of ongoing battles. However, there are endless numbers of situations where this basic model is

unsatisfactory, so let's move on to the available enhancements.

The basic parameter for the �ring actions is range of the unit, which is the greatest reach

possible. You can also set a range-min, which is useful for ballistic missiles, certain kinds of

artillery, and magic spells that can't be used for close-in �ghting; you can't �re at a unit that is

less than range-min cells away.

Also, you can de�ne how transports and occupants a�ect each other in combat. The e�ects can

be both positive and negative, and extend both from occupants to their transport and from the

transport to its occupants. The table transport-protection de�nes the percentage of hit damage

(by any unit type) that gets passed through to each occupant. If 0, then the transport is perfect

protection. If 100, then each occupant gets the same hit as the transport did. [Ideally, protection

is a prorating on a table value from occupant vs attacking unit.] Note that an occupant cannot be

attacked directly from outside its transport.

If you want to make combat dependent on having a supply of ammo, use the tables hits-with

and hit-by. The material type need not be explicitly designated as ammo, but both the hitting

and hit units must agree that the same type is e�ectual (we assume that the attacking unit is smart

enough not to use material types that have no e�ect on the target unit).

[need a combat-supply usage in addition]

3.12.1 Multi-Round Battles

[Multi-round battles are not yet available.]

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 91

3.12.2 Capture

Capture is both a distinct action type and a possible consequence of normal combat. As an

action, it is useful for both \bloodless" captures and the collecting of objects from a dungeon
oor.

To allow explicit attempts to capture, set acp-to-capture to 1 or more.

Whether the capture attempt is explicit or a consequence of combat, its basic probability of

success is derived from the table capture-chance. If the unit being captured is independent, there

is a separate table independent-capture-chance; if its value is the default of -1, then the value

of capture-chance will be used instead.

For capture attempts that are going to succeed, you can allow the victim a chance to wreck

itself �rst, by setting scuttle-chance.

The main e�ect of capture is simply to change the side of the unit that was captured. If the unit

cannot be on the capturing side, then it will vanish instead. In any case, the occupants will also be

captured or vanish, although you give them a chance to escape �rst via occupant-escape-chance.

They will also attempt to scuttle themselves if possible.

You can also require a sacri�ce from the capturing unit, via the table hp-to-garrison. This is

the number of hp that will be taken from the capturing unit. You can set it to the unit's hp-max to

make it disappear entirely. Although this table is inspired by realism, it can also serve a pragmatic

purpose, namely to prevent a single unit from capturing an entire country without being a�ected

at all! You should set this table according to the \feel" you want for the game, since it can have a

major e�ect on speed and pacing of the play.

As with normal combat, the experience of both the capturing and captured unit may change. For

the capturing unit, this is a gain de�ned by cxp-per-capture, while the e�ect on the capturing unit

is set by cxp-on-capture-effect, which is a multiplier (defaulting to 100) that may increase or

decrease experience. In practice, a decrease is more realistic, representing perhaps the replacement

of ship or airplane crews, although a increase might be more appropriate for mercenaries whose

response to capture is simply to go to work for the new bosses!

3.12.3 Detonation

Detonation is both a type of action detonate and an automatic behavior.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 92

Detonation can damage both the detonating unit (though it need not) and any units around

its point of detonation, which may or may not be its location. You set it up by de�ning acp-

to-detonate to one or more, set hp-per-detonation to express the amount of damage done

to the detonating unit, then �ll in the detonation damage tables detonation-damage-at and

detonation-damage-adjacent to say how badly each type of nearby unit will be hit. You can

de�ne the exact radius of e�ect via detonation-range. The e�ects on occupants of nearby units

will be adjusted according to the same protection/ablation tables as for combat.

You can also set detonation to trigger on various kinds of events, such as damage to the detonat-

ing unit (detonate-on-hit, death of the detonating units (detonate-on-death), impending cap-

ture (detonate-on-capture), and proximity of certain types of units (detonate-on-approach).

You can also set a chance that a unit will detonate spontaneously, via detonation-accident-

chance.

In order to model the catastrophic e�ects of the worst explosives, you can set terrain-damage

to indicate how terrain types will change.

A mine�eld could be implemented by de�ning a detonating unit that loses some small percentage

of its hp every time a unit hits it, while hitting the other unit automatically.

A simple trap would auto-detonate only once, then change to a \sprung trap" type. Then the

right kind of unit could come along and do a change type action to reset it.

3.13 Unit Manipulation

The actions in this group are a mixed bag of manipulations. If they need to be in your game,

then the need will be obvious, otherwise they are pretty much optional.

3.13.1 Transferring Unit Parts

Any unit whose parts-max is greater than the default of 1 is a multi-part unit, and its hp

denotes size rather than amount of damage. Armies and
eets are two kinds of units which can be

usefully de�ned as multi-part.

Players will very often want to merge or detach parts of a multi-part unit, and there is an

action transfer-part provided for that. You can control the cost of the action by setting acp-

to-transfer-part.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 93

3.13.2 Changing Side

Side changing is like capturing, but players can only do it to units that they control. The action

is change-side, and you enable by setting acp-to-change-side to 1 or more. This will also enable

side changing for units that cannot normally act.

Side changing is especially useful for alliances in multi-player games, so it should usually be

enabled. On the other hand, it should not be too cheap; you should consider what side changing

really means in the game's context.

For instance, even in the close British/American alliance during WWII, armies never actually

changed sides; British ground units were always British, and American ground units always Amer-

ican. On the other hand, ships and bases could be traded back and forth with only a cost in time

and expense.

3.13.3 Changing Type

In some games, it will be useful to have a notion of promotion or upgrade for units. You can

implement this by allowing players to do a change-type action.

You enable this via the acp-to-change-type table.

3.13.4 Disbanding

Sometimes a player will want to get rid of a unit, perhaps because some type has been overpro-

duced and is tying up valuable resources, or to prevent it from falling into enemy hands.

You can allow this by setting acp-to-disband to 1 or more.

You can control the rate of disbanding with hp-per-disband. You may, for instance, want to

allow the deliberate destruction of large units, such as battleships, but you don't necessarily want

disbanding to be a convenient way of preventing their capture. Setting hp-to-disband so as to

require several turns to get rid of a unit will accomplish this. The table supply-per-disband will

allow you to govern the rate of recovery of the unit's supplies during the disbanding process.

It is also possible to make disbanding a way to recover materials that were consumed in the

construction of the unit, by using the table recycleable-material. Care should be taken that

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 94

creation and disbanding of units is not a convenient way to manufacture lots of a material; players

will use the loophole if it exists!

It should usually not be possible to disband something large like a city, otherwise a clever

player might try to eliminate it as a strategic target, but most mobile units should be easily

disbanded. This is especially helpful in an \construction spiral" game, where the winning player(s)

can accumulate large numbers of useless units.

3.14 Material Manipulation

You can allow players to produce materials by explicit action, and you can control how they

transfer materials between units.

Note that you can usually have a reasonable game without requiring all the players to become

shipping clerks. The automated production and transfer parameters (see xxx) are almost always

su�cient for a game. Explicit action should be limited to games where material limitations are so

severe that they impact strategy directly, and players have to make hard choices between producing

materials and doing other actions, on a turn-by-turn basis.

You can de�ne \stevedore" units by setting both rate and acp such that the u1 -> stevedore ->

u2 transfer is faster and cheaper than the basic u1 -> u2 rate. Then players can use the stevedores

to speed up transfers.

3.15 Terrain Manipulation

In a few games, you will want to let players alter the terrain. This needs to be done judiciously,

since a cell of terrain generally represents a vast area, and the simulated time in Xconq is generally

too short for major terraforming operations. However, building bridges and digging moats can be

reasonable additions to a game.

Since actions are always completed quickly, and there is no concept of \partly modi�ed terrain",

you will probably have to come up with a trick to make terrain modi�cation be slow. One way

is make the acp (or material?) cost very high. Another way is to make the alteration happen by

removing a material, such as clearcutting a forest, then letting the action make the actual change

to clear terrain.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 95

3.16 Vision

Vision is an important part of Xconq. Information need not come for free in your game design,

and you can design the parameters to control how much players can get. The possibilities range

from total knowledge as in board games, where nothing is secret except the enemy's heart, to games

where much of the play hinges on who knows what, and when.

3.16.1 Seeing All

The simplest thing to do is to set see-all to true. Then every player sees all the terrain,

everybody's units, everybody's occupants, the whole world and everything in it. This makes Xconq

like a conventional video or board game, which is sometimes just what you want. Also, since the

view matches the world, the game is simpler for players, who need not concern themselves with

possibly out-of-date information. Finally, see-all is more e�cient in time and space, since the

general visibility calculations need never be done or recorded. Many games include see-all as one

of their variants.

You may also �nd see-all to be a useful game debugging aid, since you can watch what is

happening everywhere in the world. But, remember that any AIs will most likely adjust their

strategy and not bother with patrolling or guesswork about the enemy, and you won't be able to

debug the other viewing parameters either!

3.16.2 Coverage

Still, much of the fun in Xconq is the potential for surprise. The theory of visibility in Xconq is

that each side has a layer of coverage, which basically just counts the eyeballs looking at each cell.

As your units move around, the coverage in each cell goes up and down. Any cell with a coverage

of zero is not currently being viewed by any of the side's units.

The unit property see-always is useful for units like towns, which are unlikely to disappear

secretly.

These two parameters apply recursively, so for instance a city could be see-always and see-

occupants, while a building in the city is see-always and not see-occupants, with the net e�ect

that units inside a city can be seen by everybody, but not when they enter a building.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 96

3.16.3 Initial View

The initial view represents the knowledge assumed to have been gathered over the period of

time preceding the game. Xconq lets you set a radius around each initial unit, within which the

side knows everything. Also, any people on your side view both their cell and all the adjacent cells.

already-seen should usually be true of things like cities, independently of their see-always

setting.

3.16.4 Vision Range

The default vision range (vision-range) is 1, which basically means that a unit can see into

adjacent cells but no further. You can set this to higher values, which is useful for tactical- and

person-level games with line-of-sight (LOS) rules [if they ever get implemented].

You can also set the vision range of a unit to 0, which means that it can only see things in its

own cell. However, as a special case, when such a unit enters a new cell, Xconq will show the terrain

of each adjacent cell, but not any units that might be present. This is so players can decide which

way to move without having to plunge blindly into unknown terrain or do some sort of awkward

\adjacent cell examination" action before moving. This only provides information about terrain

and units that are seen if the terrain is seen.

3.17 Backdrop Weather

[The four temperature extremes are independent of each other, so you can make higher latitude

temperatures vary drastically with the season, while equatorial temperatures are much more stable;

or vice versa.

Average temperature usually varies more slowly over some kinds of terrain than others. For

instance, oceanic circulation moderates temperature swings in terrain that is near open ocean.]

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 97

3.18 Backdrop Economy

Economy in Xconq means pushing materials around. So if you want an economy in your game

design, you have to de�ne at least one type of material. To de�ne the economy, you have to decide

where materials come from, how they get moved around, and how they get used up.

3.18.1 Creating Materials

Materials come into existence by being placed in units or terrain during setup, by being produced

by units or terrain, and by appearing in newly-created units.

3.18.2 Movement of Materials

Once in existence, players can move materials around by explicit action. You can also de�ne

automated material movement that uses supply and demand. The tables in-length and out-

length control the distance over which materials will move each turn.

3.18.3 Consuming Materials

Materials exist to be consumed (unless they are relevant to a scorekeeper). You can set how

much each kind of action uses, as well as how much is needed as a prerequisite, sort of like a

catalyst. You can also set consumption due to existence alone, plus what happens to a unit when

its supply of a material runs out.

3.19 Random Events

What simulation game would be complete without random events? Random events are handled

somewhat similarly to synthesis methods, in that you set the value of the variable random-events

to a list of the methods that you want run. Note that you must still ensure that the probabilities

for the events on your list are nonzero!

Super�cially, random events just introduce some unpredictability into a game. However, adding

it just for its own sake is not a good idea; in the worst case, the game becomes the infamous \dice-

rolling contest", where nothing matters except luck. Random events are more valuable when they

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 98

introduce risk, and players have to balance that risk against their goals. As an example, random

losses of cities in the standard game would be pointless, since players have to have them, and there

would be a chance that all of a player's cities would disappear, causing the player to lose for no

good reason at all. On the other hand, the chance of losing an expensive capital ship in shallow

coastal waters is enough to motivate the player to keep them well out to sea.

In the past, bugs or unexpected behavior in random event routines have resulted in hard-to-

reproduce problems. For the sake of debugging, you should test the game with random event

probabilities set very high, perhaps as a variant so it can still be played normally.

3.19.1 Accidents

The name of the accident method is accidents-in-terrain. Accidents should be restricted to

de�nite hazardous situations, to go along with movement constraints - for instance, carriers and

battleships in shallow water should have a small chance to hit a rock and sink.

You can specify two kinds of accident; a damaging accident, which hits the unit as if it were in

combat, or a vanishing accident, in which the unit disapppears instantly.

Damaging accidents occur according to the accident-hit-chance table, and damage the unit

according to accident-damage. The interpretation of these is similar to their combat counterparts.

The accident-vanish-chance table sets the probability for the unit to simply vanish without a

trace.

3.19.2 Attrition

Attrition is a sort of higher-probability/lower-damage type of accident. It is useful for armies

in hostile terrain, where deserters and casualties slowly reduce its strength.

Attrition can be useful for \aging" a unit, if you need to keep the unit from being around too

long.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 99

3.19.3 Revolts

Revolts are spontaneous changes of side, independent of any other consideration. Since there is

no way to protect against this, the chance should usually be very small, less than .01; even a small

chance of will cause players to maintain reserves just in case.

3.19.4 Surrenders

The method's name is units-surrender; when it runs, it checks each unit to see if it is within

surrender-range of a unit on an unfriendly side, and if the surrender-chance occurs, then

the unit will change to the side of the other unit. Occupants will also evaluate their surren-

der/scuttle/escape chances, and behave accordingly.

3.20 Designing the Interface

So far, the game design machinery has been focused on semantics. The other part of the game

design de�nes how it actually appears to the players. This part of the design can be more loosely

designed, which is good, because you cannot guarantee that your game design will only ever be run

with a particular interface, and there is a wide variety of interfaces. You could, for instance, de�ne

an elaborate set of color graphical icons and patterns, only to �nd that most of your players only

have black-and-white displays. Xconq itself will always be able to cope with your omissions, but it

will be forced to synthesize inferior substitutes.

Game designs have three general categories of interface elements that they can specify: text,

graphics, and animations. Text elements are just strings describing objects and events in a readable

form, while graphics consist of small icons and patterns primarily representing units and terrain.

Animations are used to illustrate events as they happen, and may include sounds.

3.21 Designing Text

Although Xconq is primarily a graphical game system, it is complex enough that the graphics

alone are insu�cient to describe what is going on.

All text that players see is issued by text generators, which are objects that, when given ap-

propriate inputs, produce text fragments that can be used by the interface to produce a textual

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 100

display. Each text generator has a number of parameters that may be used to select one of several

rules [etc]

3.21.1 Describing Objects

3.21.2 Describing Events

3.21.3 Generating Names

One of Xconq's special features is its extensive machinery for generating names of things. You

can generate names for sides, units, and geographical features. The possibilities range from a

simple list of strings up to context-free grammars and arbitrary code modules. Naming happens

throughout the game, as nameable objects are created, but is mostly done during initialization.

3.21.4 Grammar Examples

Here is a very simple grammar:

(namer (grammar root 40

(root (or 1 (the animal in the thing)))

(animal (or cat dog sheep))

(thing (or hat umbrella fold))

))

It makes phrases like "the cat in the hat", "the dog in the umbrella", and "the sheep in

the hat".

This example is more realistic:

;;; German-like place name generator.

;;; Conventional combos most common, random syllables rare.

;;; Needs more conventional words to combine?

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 101

(namer german-place-names (grammar root 50

(root (or 95 (name)

5 ("Bad " name)

))

(name (or 40 (prefix suffix)

20 (both suffix)

20 (prefix both)

5 (prefix both suffix)

10 (syll suffix)

10 (prefix syll suffix)

))

(prefix (or

schwarz blau grun gelb rot roth braun weiss

wolf neu alt alten salz hoch uber nieder gross klein

west ost nord sud

;; from real names

frank dussel chem stras mut

))

(suffix (or

dorf torf heim holz hof burg stedt haus hausen

bruck brueck bach tal thal furt

;; these aren't so great

ach ingen nitz

))

(both (or

feld stadt stein see schwein schloss wasser eisen berg

))

;; Generate random syllables

(syll (or 40 (startsyll vowel endsyll) 5 (vowel endsyll)))

(startsyll (or 30 startcons 10 startdiph))

(startcons (or b k d f g l m n r 5 s 3 t))

(startdiph (or bl kl fl gl 5 sl 3 sch 2 schl

br dr kr fr gr 2 schr 3 tr 2 th 2 thr))

(vowel (or 6 a ae 2 au 5 e 2 ei 2 ie 6 i 3 o oe 2 u ue))

(endsyll (or 4 b 5 l 3 n 4 r 4 t

bs ls ns rs ts 3 ch 3 ck

lb lck lch lk lz ln lt lth ltz

rb rck rch rn rt rth rtz

ss sz 2 th tz

))

))

This generator usually takes normal German words and glues a couple together, making names

like "Schwarzburg", "Nordbruck", and "Bad Salzwasser", but it will occasionally make a com-

pletely random syllable using common German phonemes, then glue it into a name, resulting in

names like "Biefeld" and "Salzgloelthach". Yes, that last one is unpronounceable even for

Germans, but the generator doesn't know that!

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 102

Since there is no special handling to ensure non-garbled names, it generally does not work

particularly well to try to build names from vowels and consonants. Either random selection from

a list or putting together syllables seems to do better, with perhaps a single totally random syllable

thrown in. Don't forget that this is a generator, not a recognizer or parser, so you don't have to

be able to handle every possible name; just enough to make an interesting variety.

Recursive rules, where a symbol expands into a sequence mentioning that same symbol, will

work, but they are not recommended. Although the generator has a builtin limiter to keep from

looping forever, in general there is no way to avoid getting awful names like "Feldbruckbruckbruck".

Instead, you can just add extra rules, one for each desired length, so for instance you have a rule

for 2-syllable names, one for 3-syllable names, one for 4 syllables, etc. Another advantage is that

you can set the probability of each length of name separately, and thus lower the probability of

longer names, so that they only appear once in a while and you save the poor players from being

continuously tongue-tangled!

3.22 Designing the Graphics

Xconq is fundamentally a graphical game; fortunately, you don't have to do gnarly graphics

hacking to get the pretty pictures! The basic graphics handling is built into the interface subroutines

of Xconq. What you do have to do is to choose or design the basic images.

Xconq will always attempt to generate some sort of default display for your new game design,

but it's likely to be pretty ugly. So your goal here is just to make the display look good. First o�

you should decide about the overall appearance. Do you want things to be generally light or dark?

Garish or subtle? Conventional or exotic? This is a good time to cruise the image libraries and to

look at the graphics of other games. Sometimes the theme decides a lot for you - how could you

display anything other than a red star on a Soviet tank? You also need to think about whether

you want to concentrate on b/w or color displays, although again Xconq will try to do something

reasonable for both.

You have to choose three sets of images: terrain patterns or images, unit icons, and side emblems.

The terrain patterns have to tile properly, since they may be used to �ll in large areas, while both

unit icons and side emblems are single icons. You can optionally choose solid colors for terrain,

and to \colorize" unit icons and side emblems.

Once you have chosen and speci�ed a set of images, you have to try them out in various

combinations in real games. What you'll most likely discover is that they don't always mix like you

imagined. That cool-looking emblem for a side disappears against the background of space, or two

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 103

unit icons are nearly indistinguishable on the map. At this point, you have to start making some

choices. Either substitute some di�erent images, or design new ones of your own.

Color choices are tricky. Again, the total e�ect can be quite di�erent from what you imagined,

plus you should be careful about the variety of displays that your game runs on, or you may be

getting complaints about how your \olive" more closely resembles \puke gray"!

Here is an example of unit icons:

(add (infantry town city) image-name ("soldiers" "town20" "city20"))

In general, an icon name should describe the literal appearance of the image, instead of the type

that you want it to represent. The "soldiers" icon, for instance, just shows a row of soldiers; in

one game the icon can be used to represent infantry, in another, armies in general, and in another,

the national guard. There is an "infantry" image also, but it is the standard \crossed bandoliers"

symbol, and is really only sensible for specialized military games.

Here is an example of a terrain pattern:

(terrain-type plains

(color "green") (image-name "plains") (char "+")

)

The "plains" is de�ned in lib/terrain.imf, as basically a blank 8x8 tile with two pixels

turned on, which textures things somewhat:

(imf "plains" ((8 8 tile)

(color (pixel-size 1) (row-bytes 1)

(palette (0 7969 46995 5169) (1 0 25775 4528))

"00/40/00/00/00/04/00/00")

(mono "00/40/00/00/00/04/00/00")))

For extra �ne control on color displays, you can also set the colors of unseen terrain and the

grid separating cells, via the globals grid-color and unseen-color.

Note that some display systems (such as the X Window System) allow users to customize most

or all of their colors, so individuals may override your choices. Not much you can do about that

though!

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 104

3.22.1 Image Format

(imf "example" ((8 8) (mono "0011223344556677")))

[describe when
eshed out]

3.22.2 Image Design Hints

The design of each graphical image can and should be somewhat independent of the basic game

design; this allows for reuse of pictures.

The �rst thing you should do is to check the image library on your machine. The image you're

looking for may already be there, but perhaps under a di�erent name. Even if you don't �nd it,

you may notice an image that is close enough to be a good starting point. The Xconq image library

presently includes hundreds of images, so the chances are pretty good that you'll �nd something

useful.

Designing good images and patterns is a specialized and demanding category of artwork that

I'm not going to go into here. My best advice is to learn from the pros, and don't be afraid to

experiment.

3.23 GameModule Organization

Each separate �le is known as a game module or just module. A module has a name, displayed

name, an advertising-style blurb, a version, and designer notes.

This is an example of an elaborately-declared game module with no actual content:

(game-module "foobar"

(title "Foo of Bar")

(blurb "An exciting game with lots of cliffhanging suspense")

(version "1.3")

(program-version (>= "7.0.3"))

;; other properties?

(complete-game true)

)

;;; contents here

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 105

(game-module (notes (

"This is just a sample game."

""

"It's not really as interesting as the blurb makes out."

)))

(game-module (design-notes (

"This is commentary addressed to other designers."

"Also a good place to mention things to work on."

)))

The notes and design-notes could have been supplied with the �rst game-module declaration,

but in practice, putting the player and designer notes at the end of the �le keeps them out of the

way. You can supply any number of game-module declarations in a �le. Only the �rst need include

a name.

The game module format is only loosely structured. In general, anything that you might want

to reuse or combine in di�erent ways should be a separate module. Good candidates include text

generators and maps of real terrain. Unfortunately, they don't always mix-and-match as well as

you might like!

The following are the generally preferred module names:

Terrain-only modules should be named t-xxx.

Lists of units should be named u-xxx.

Name generators should be name ng-xxx.

When supplying a year in the module name, use four digits, unless the rest of the name makes

the century clear (WWII scenarios are pretty much guaranteed to be in the 20th century!).

3.24 Building NewGames

There are at least three ways to make a new game design: use Xconq commands to \play" a

game and then save it, create and text-edit the text �les de�ning a game, or write and run special-

purpose programs that create games. A combination of these techniques will likely prove the most

useful, since each alone has both strengths and weaknesses. For instance, text editing may seem

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 106

like a crude approach, but is the only way to produce certain types of scenarios, and text editors

have many facilities (such as regular expression replacement) not directly available in Xconq. On

the other hand, maintenance of the correct transport/occupant relationships between units is hard

to do while editing text, but comes for free when using Xconq itself.

3.24.1 Building Scenarios

The easiest way to customize Xconq is to build a scenario. A scenario is basically a saved game

from which irrelevant details, such as the list of players, has been omitted. Typically this will

include tweaking details, removing random irrelevant junk, and generally tuning things.

One way to do this would just be to start a normal game, save it, and then dig through the

saved game and edit it, since the saved game is itself a game module. Sometimes this is easy, more

likely it will be quite hard and error-prone. A better way is available, in the form of \designer

mode".

3.24.2 Designer Mode

There are two ways to get into designer mode; one is to start up a game with the appropriate

option (-design under Unix), which makes every player with a display a designer, the other is to

switch on a
ag after the game has started. Being a designer is a property of a side, so in theory

a game could have a designer and several other human players, or even multiple designers (this

might be useful in having assistants to help with the construction of large scenarios, or just to have

displays open to each side's view of the scenario). AIs e�ectively sit out the game while designers

are present.

Designer mode enables an additional set of commands on the menu or map control panel, as

well as removing some restrictions on the use of normal commands. It also enables more elaborate

game saving machinery, so you can save only the parts of a game that you want to make into a

scenario.

Modi�cations to normal commands include the permission to look at and do any command on

any unit, including independents and units belonging to other sides. For instance, any unit can be

renamed at any time by any designer in the game. The modications include the following:

� Move commands can put any unit at any destination instantly.

� Any unit can be put on any side.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 107

� Any unit can be disbanded instantly.

� Any terrain can changed to any type.

Some interfaces may also provide additional tool palettes and the like.

3.24.3 Saving Scenarios

If you're not in designer mode, then saving the game will save absolutely everything. In designer

mode, the interface should ask you what parts of the game you want to save, and what to name

the module.

If you don't save everything, then you should start up another game just to con�rm that you

got what you wanted, before shutting down the Xconq that you're designing with. Sometimes you

won't have saved what you thought you did... It's also a good idea to keep a backup copy of data,

especially the indecipherable area layers; use the nesting comments #| |# around the old stu�,

only delete when you're sure it's no longer of interest.

3.24.4 Conversion from Xconq 5

There are many scenarios extant from the version 5 of Xconq. Many of them are good games

despite some of the quirks of version 5 that they had to work around. Converting these scenarios to

the new GDL syntax should provide some great new modules and at any rate provide a goldmine

of ideas for updated Xconq game modules.

A set of conversion scripts are provided that will help to ease the transition from version 5 to

version 7, but they won't save you from learning the new GDL syntax or features. These scripts

will NOT generate working games modules, but they will generate valid GDL syntax, and thereby

spare you much tedium in conversion.

The �rst thing to consider is the naming of the �les/modules. There are already some loose

guidelines for naming version 7 game modules (see Section 3.23 [Game Module Organization],

page 104). Terrain or worlds should be in modules named t-xxx.g. These are roughly equivalent

to version 5 .map �les. Collections of units, such as the cities to populate world maps, should be

in �les named u-xxx.g, where xxx generally identi�es which map they go with in addition to a

general identi�er (e.g. 1942). Name generators are in �les of the form ng-xxx.g, but you probably

don't know or care about these yet. And �nally, if you are building a set of scenarios based on

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 108

a core set of rules, you should consider a naming scheme that will link them all together so that

players can �nd them easily.

Having said all that, let's get on to the conversion. The conversion scripts go somewhat blindly

on the assumption that you've split everything up in the \standard" way. That is, assuming that

you've got a spi�y big scenario, that it comes in three parts: a period de�nition, a map and a

scenario �le. If not, if you've dared to combine some of these �les, you should split them manually

before starting the automated part of the conversion.

Convert the map using map2g. You want to use the -o option and your new t-something name

and the -b with a full pathname to the period �le that has the terrain type de�nitions in it.

This allows map2g to set the default base module and the get the appropriate character list for

creating the map �le. The generated world will have its circumference set to match the width of

the generated area, i.e. it will wrap from side to side. This is because all maps are cylindrical in

version 5.

Next, do a pass over the .scn �le with scn2g. Again you should use -o to get the naming the

way you want it. This should leave you with a very pretty set of units and a very rough hack at a

set of victory conditions (i.e. scorekeepers). The scorekeepers will need to be completely reworked,

since they work rather di�erently in version 7.

Now the home stretch, convert the .per �le with per2g. Keep an eye on the output. If it

complains about \unknown keywords" then you've probably used one of the more obscure features

of version 5. Don't panic because your obscurity will be preserved{commented out{in the resulting

game module. Now you have to edit the module and start sorting out the bits that per2g couldn't

handle. Search for occurances of FIX. These are lines inserted by per2g to note places that need

your attention. per2g may have done nothing to the line except comment it out, or it may have

done a partial (or partially correct) conversion, or it may have done a complete and valid conversion

but wishes to call your attention to related forms that can be added.

For this process you are going to need to have the documentation close at hand to make sure

you get the syntax right. The best thing to do is read thru this chapter of the manual and then

have the Reference Manual chapter on hand while editing the module.

Generally the place to start will be the make and maker lines from the old period de�nition.

These are not converted at all by per2g (because the machinery has changed so radically in version

7), but are often essential to being able to start up a game. From there you can work your way

through the rest of the �le with frequent references to the manual and occasional test runs. Check

out the debugging tips in this chapter.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 109

3.24.5 Preparing a Game for Use

Once you've constructed a game, you should bring it to a state where it can be given to other

Xconq players. I recommend copying a standard software release strategy. This means documenting

how to play the game, documenting how it works internally, removing unused junk and dubious

features, simplifying where possible, resolving open issues if possible, documenting them as known

problems if not. This gets you to the point of having an \alpha" or \beta" version (the terms are

not precise!). These can be given to other people for testing, but should be clearly identi�ed as

test versions, because your testers may pass copies along to others without you knowing about it.

After some playtesting (see below), edit your game into its �nal form, call it 1.0 and release it to

the world!

After you release your game, you may get some feedback about unanticipated problems. When

you resolve these, and want to make a new release, be sure to give it a distinct version number. This

will be important to deciding whether subsequent complaints are about your new release or some

older one. If you always put the version number into the version property of the game-module

form, then it will be displayed to players when they ask for help on the game.

3.24.6 Installing Scenarios

Once the scenario is constructed and saved, you can install it in the library and otherwise do as

you like with it. See the interface documents for platform-speci�c installation details; in general,

just copying the �les into the lib directory will su�ce.

3.24.7 Safety

While generally safe { Xconq shouldn't crash while you are designing nor upon starting up your

scenario { you can do silly things, like loading a submarine with battleships as passengers. Xconq

won't complain, but it may behave very strangely. For instance, a unit might be able to travel with

a transport and leave it, but not be able to get back on again.

One way to test a game is to remove all the scorekeepers and make all the players be AI-

controlled. The AI code will then act totally randomly, thus exercising parts of your design that

you may not have thought much about. A convenient way to try out various scorekeepers is to put

them in variants, then select them upon startup.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 110

3.24.8 Balance and Playtesting

Scenario design can involve subtle questions of balance which will only be revealed by repeated

play of the scenario. Playtesting is extremely important, even for simple scenarios! You should

try as many combinations of startup options as possible - for instance, the combo of two humans

and one machine might reveal a peculiarity that is not observed in a two-person game. You can

solve many problems by adding more restrictions. Since the scenario is your concept, you are free

to make whatever decisions are necessary to realize that concept; if somebody complains, they are

free to make their own designs.

Playtesting is also the time when you may have to sacri�ce realism and favorite theories for

playability. Listen to and watch yourself and your testers as the game is played. For instance, you

might have included a city out in the boonies, but in the game it never does anybody much good,

while still requiring some amount of attention regularly. Lose it.

Game startup can be confusing to players if they all start out with lots of units needing to be

told what to do. One solution is to put most units on automatic behaviors that expire in a turn or

two, so that novices gradually hear from all the units, while experts can still override right from the

outset. Another approach is to make units independent and allow them to be captured early on.

Still another approach is to make units come in as reinforcements at preset times and locations.

Although as many of the game parameters as possible are checked, there is plenty of room for

subtle loopholes. You should think carefully about the consequences of each parameter, being par-

ticularly sensitive to degenerate winning strategies. Most common are units that are too powerful,

too fast, or are built so quickly that they overwhelm any opposition. Players should always be a

little \hungry"; not able to get quite as many units or as much material as they would really like.

3.24.9 Complexity

Although GDL is a powerful language, you should avoid designing a game that is too complex to

be humanly playable. A single game can literally de�ne millions of di�erent parameters, each with

a range including 100 to 10,000 distinct values. It is clearly possible to spend many years exploring

just a single set of these! For more playable and enjoyable games, either pick a single thing to treat

in detail, or else do everything in a simpli�ed way. For instance, if you want elaborate movement

and combat rules, avoid or even eliminate materials and associated material handling rules.

Another thing to keep in mind is that the introduction of a new type may have far-reaching

consequences { for instance, a new unit type will need its interactions with all other unit types

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 111

de�ned. One approach is to introduce a new type as a slight modi�cation of an existing type, then

to share most of the de�nitions. Another thing you can do is to put complexity into the variants, so

players with a taste for punishment can indulge themselves, while leaving the basic game as more

of a fun thing.

3.24.10 Combinations

Many of the 700-plus game parameters were chosen for their ability to combine in interesting

ways, rather than for obvious usefulness. For instance, construction in a city can by default generate

an in�nite stream of units. But suppose you want to put a limit on the numbers of that type of

unit? One way is to de�ne a material that is essential for construction of that type, let the builder

have an initial supply, but provide no way to get more of that material. When it runs out, no more

units!

Another trick is to motivate an activity by making it a prerequisite to the basic builtin goal of

defeating the other player. The age of discovery worked this way. The kings of that time weren't

interested in new lands per se; they wanted exploitable possessions that could be used to get gold to

buy armies big enough to defeat their neighbors. You could describe this situation almost exactly,

by making gold a material, obtainable only by the discovery and capture of independent gold mine

units, which are thinly scattered over the world and can be found only by careful exploration.

Be inventive! Studying the prede�ned games should suggest many tricks; the \Problems and

Solutions" section below describes even more. Be sure to document the trick carefully, or the next

time you work on the game, you might break it, resulting in unhappy players wondering why their

usual strategies don't work anymore.

3.25 Debugging

Completely new game designs usually have a number of bugs. There are several stages of trouble

that you may encounter. First, the Xconq may fail to read a game module completely. It will try

to report what happened, but if for instance you left out a closing parenthesis, you may get some

strange error messages. This is just plain old syntax error trouble.

Once you've successfuly read in your new game, bring up the online help and scan through to

see if the values present are what you thought. Sometimes the reader does not interpret a module

in the way you thought it would. The print form is useful for debugging at this point; it can show

you whether a de�ned symbol has the value you thought it did.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 112

However, the most serious problems with games are play balance issues. Some can be found

out by watching a machine player attached to a display, since its decisions are based on perceived

values of the units. The most subtle bugs can only be uncovered by extensive play interspersed

with judicious alteration of parameters. I �nd it useful to play for a while, then review and adjust

the game parameters all at once, thus avoiding tweaking one parameter only to �nd that it results

in another being inconsistent. Parameters interact in many ways - you should keep this in mind

when experimenting.

Something else to keep in mind at this point is that playability should outweigh realism. For

example, real-life airplanes can travel 1,000 times faster than a person walking on the ground, but

airplanes that could move 1,000 cells in a turn would be ridiculous (try it out, Xconq will let you

do this!).

3.26 Problems and Solutions

This section discusses speci�c kinds of design problems and ways that you might solve them in

Xconq. These are merely suggestions; in the past, game designers have come up with all sorts of

ingenious ideas. If you come up with one yourself, please pass it along!

3.26.1 Limiting Unit Quantities

In some cases you may want to constrain the total number of units in play, perhaps because of

performance reasons, or because some type tends to proliferate more than is desirable, or because

your game concept requires a hard limit on the number of units. You have several ways to do this.

Xconq does give you several parameters that put a simple cap on total numbers, either by unit

type or for all units, and per side or for all sides together. You can also de�ne a material type that

is essential to the creation, completion, or operation of units, and make that material be hard to

come by. Iron to make ships, gold to pay armies, or food to feed armies could all work this way. If

the only source of the limiting material is an initial supply in a starting unit, then this is a hard

limit; if production of the limiting material is slow, then the limit is softer but still very real.

Limits on unit quantities have some interesting uses beyond the obvious ones. For instance, a

useful type that is limited to at most a single instance could be a sort of \football" where the side

that has the one unit �nds itself being chased after by all the other sides trying to get it. You

could make a WWII-era game with \Oppenheimer" as the only scientist who knows how to make

an atomic bomb (I know, it's not realistic), and have the di�erent sides trying to kidnap him.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 113

3.26.2 Handicapping

Very rarely will the Xconq players in a game all be at the same skill level. Sometimes this is

OK, since weaker players really do learn more from their losses than their wins. However, when

the goal is to have fun, or when the di�erence in abilities is extreme, you can balance things out in

several di�erent ways.

One simple approach is just to design an imbalanced scenario, document it as such, and let

players choose the stronger and weaker sides as desired. In many cases this should be su�cient; for

instance, accurate historical simulations.

The next most simple solution is to set up sides or side classes and �ll random properties

di�erently. Weaker players could choose a side with more technology or whose class allows more

powerful units. This isn't very adjustable, since all the sides and their property values have to be

prede�ned.

To enable the most precise match of player abilities, you can use the initial-advantage prop-

erty of player objects. This property is a relative value, defaulting to 1, and indicates how strong

the initial unit setup should be relative to the other players. For instance, if a three-player game

includes advantages of 2/3/7, then the second player will have three units for each two of the �rst

player while the third player (the weakest) will have seven. The implementation of relative advan-

tages is up to game synthesis, so for example the make-countries will adjust all the numbers of

initial units to match the requested advantages. Note that this a�ects only the initial setup, and

only certain synthesis methods. Once a game has started, all sides are always on an equal footing.

3.26.3 Buying the Initial Setup

A common form of game setup is to give each player a quantity of \money" of some sort, then

give them a menu from which to buy things. The way you would implement this in Xconq is

similar to the method for limiting unit quantities - make the money be an initial supply of a special

material type not used for any other purpose. This initial supply should be given to a �rst unit

that each player starts with. This �rst unit could be something like the adventurer in a fantasy

game who starts with a pot of money, so the �rst unit is also the most important one, or perhaps

a little dummy unit that buys the other units and then is of little interest thereafter, sort of like

the national bank for the player's country.

Here's an example:

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 114

(unit-type adventurer

(start-with 1)

)

(unit-type shop

(start-with 1)

)

(unit-type sword)

(unit-type armor)

(unit-type boat)

(material-type money)

(table initial-supply (adventurer money 200))

(table acp-to-create (shop (sword armor boat) 1))

(table material-to-create ((sword armor boat) money (20 100 1000)))

The shop can't do anything besides create items when given money. The adventurer starts with

the money and has to give it to his/her shop, then order the shop to create the items desired. The

shop will create completed items instantly, ready for the adventurer to use.

Note that this can't be extended to buy extra intrinsic qualities, such as hit points or action

points.

3.26.4 Leaders

Some games, particularly wargames set in Napoleonic times or earlier, feature the concept of a

\leader" as the sole individual who can make things happen. Without a general or �eld marshal,

the army won't move. Whether or not this is truly realistic, it does have the e�ect of focusing the

game on key individuals!

One way to do this is to make the leader be a self-unit and limit the distance of direct control

over other unit types. Another way is give armies 0 acp and allow leaders to push them around,

and still another way is to use leaders as occupants that add to an army's speed.

3.26.5 Navigable Rivers

The concept of a navigable unbridged river is a real problem for Xconq. Non-navigable rivers

are easily done as border terrain, and navigable rivers with lots of bridges can be connections (since

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 115

by their nature, connections can never prevent movement). But a navigable river that can't be

crossed easily is more of a problem. One way is to make a chain of adjacent cells of a water terrain

type. However, this can be quite unrealistic if cells represent large areas, say 10-100 km across;

you can end up with continents consisting of more river than land. In some cases, you can de�ne

a \river valley" terrain type where both vessels and ground units can exist, with the river border

terrain along just one edge of the valley.

You can also allow border sliding. Border sliding allows a ship to pass along the length of a

border, but it does require the ship to be in compatible terrain at both ends of the border. So

de�ne the river as a chain of alternating water cells and water borders connecting them together.

Then the river acts as a barrier to units wanting to cross, while allowing them to see over to the

other side, and at the same time ships can pass up and down the river freely (modulo any ZOC

exerted by units on either side).

3.26.6 What Ranges for Values?

One of the problems that you encounter when de�ning a lot of interrelated units with lots of

properties and tables is to decide where to start out with the numbers. There are a couple ways to

get started.

First, you can start from real-world numbers. Let's say your game concept is based on turns

that last about one day, and you want to use worlds with cells that are about 10 miles across. Now

a person in good shape can walk about 2 miles per hour, or 20 miles in a day, which comes out to 2

cells/turn as acp-per-turn for units on foot. This allows a speed of 1 cell/turn for injured, tired,

or overburdened persons, via the various speed modi�ers. However, if this same game includes

automobiles and airplanes, then using the same calculation, we get automobiles that can move 60

cells/turn and airplanes that can move 600 cells/turn! The massive disparity in speeds makes for

poor playing; every turn each airplane will make 300 moves while the foot traveller makes 1. To

make the game work, you'd have to make airplanes slower (they have to refuel a lot perhaps) or

make people faster (nobody walks anywhere anymore). So the real-world numbers approach isn't

foolproof.

Another way to go is to start with the smallest values and work up. For instance, in the monster

game above, you could assume that the mob moves the slowest, and give it a speed of 1. Then you

say that the national guard should be able to move twice as fast, and give it a speed of 2. Then the

monster should be able to chase and catch mobs and guards that run away, so you give it a speed

of 3 or more. This approach is more painstaking, particularly when lots of numbers are involved.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 116

You can use both approaches together as well, working with real-world numbers until they get

too weird, then adjust to make relative values sensible, then do some more real-world calculations.

As always, only playtesting is the �nal arbiter. Once the numbers \feel" right in a game, only the

obsessive-compulsives will care about their exact values.

3.26.7 Fatigue

Players are often unmerciful to their units, moving them nonstop, going into battle after battle,

never a thought for how tired the poor units might be. Although Xconq does not include fatigue

as a basic concept, it does have several ways to implement the e�ects of fatigue.

One way is to use acp debt. If you allow the acp to go negative during a turn, then the player

can work the unit really hard for one turn, then it has to rest until its acp builds up to positive

levels again. While acp is negative, the unit can take no action on its own. Over a period of time,

the e�ect is that of a unit that can only do so much, but can exert itself when needed.

Another way to do fatigue is via a material type, perhaps called \energy" or \enthusiasm". As

an abstract sort of material, don't let energy be passed around (unless you want to have \infectious

enthusiasm", might be useful sometimes for leaders and morale builders). Units need energy in

order to move, and can consume energy faster than they produce. For instance, if a unit has a

speed of 3 hexes/turn, consumes 2 units of energy per move, and only produces 4 units of energy

each turn, then on the average the unit will only be able to move 2 hexes in each turn, although

if it saves up energy, then it can move the full 3 hexes. Since di�erent kinds of terrain can have

di�ering productivity, you can also make some kinds of terrain be more tiring than others. A resort

hotel unit could also be allowed to transfer energy to its residents, restoring them faster than a

Motel 6.

3.26.8 Brainless Units and Scorekeeping

One special case to watch out for occurs in games with \unintelligent" units, that is, they have

an acp of 0. If a side loses all of its units except for the unintelligent ones, the player will not be

able to do anything except wait for the game to end. This might be OK, for instance if the idea

of the game allows for a side to own a particular unit, whether or not it can do anything with it

(perhaps the unit is a fort, and a side can win if it owns the fort, even at the cost of all its other

units). Usually, however, the side ought to just lose, in which case you will need to de�ne a special

scorekeeper that requires each side to have at least one of some sort of unit with acp > 0, or else it

loses.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 117

3.26.9 Days and Years

[should go elsewhere]

The Xconq world can be made to revolve around its sun and to rotate on its axis. [etc]

To get a realistic hour-by-hour simulation, say

(world

(day-length 24)

(year-length 8766) ; this is 365.25 days

)

3.26.10 Xconq 5.x Setproduct

Xconq version 5 had a sometimes-useful
ag called \setproduct" that could be set to false,

with the e�ect that any attempts to change construction were disabled. So for instance, a city

that was set by a scenario to build bombers would then build bombers throughout the game. The

advantages were both in realism (retooling a factory can be very time-consuming) and in playability

(no construction planning required).

To emulate this in version 7, you can set acp-to-toolup to be zero for cities, but at the same

time require 1 tp for each type that the city can construct. In the scenario, set the value of the city's

tooling to be 1 for the one or more types that you want it to specialize in (maybe switching between

�ghters and bombers should be possible, but not to submarines). Players can then start and stop

construction as desired, but are limited to only particular types. Even captured independent cities

can be limited in what they can be used to construct.

3.27 Optimization

The add form is very powerful and very useful for making groups of objects share some data.

The grouping also helps the designer to see how sets of numbers compare to each other. In other

words, instead of having multiple forms:

(unit-type foo

...

(acp-per-turn 3)

...)

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 118

(unit-type bar

...

(acp-per-turn 49)

...)

(unit-type baz

...

(acp-per-turn 2)

...)

you can say

(add (foo bar baz) acp-per-turn (3 49 2))

to get the same e�ect.

To get an inheritance-like e�ect, you can append lists of types together, as in

(define mammal (dog cat cow))

(define bird (hawk eagle condor))

(define animal (append mammal bird fishie))

which results in a list of seven types. It is possible to append di�erent kinds of objects together.

3.28 Miscellaneous Tricks and Techniques

An unwanted unit in a shared library �le could be gotten rid of by matching on id or name

and then setting hp to 0; (unit "Corinth" (hp 0)), for instance, would eliminate Corinth from

an ancient Greek game.

Elevation data, while interesting to include, can take up a lot of space and be more detailed

than necessary. The parameters here allow you to restrict elevations to a smaller range of values,

which will allow for more compact encoding and simpler games. For instance, a game set in rolling

countryside doesn't need a huge range of elevations; you could set elevations to range from 0 to 300

meters, in 30-meter increments. Then only 4 bits will be needed to encode each value, and yet the

player will still see reasonable values like "150 meters", and formulas for temperature and other

elevation dependent data will be correct.

Note that just because a player controls a side doesn't mean that the controlled side can be taken

out of the game; for one thing, certain types of units will not change sides under any circumstances.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 119

People materials should usually not be directly movable between units.

ZOC should be less than combat range usually, since it means that exerter should be able to

control ground (but could attack further in multiple turns). ZOC levels should be only those

reachable by the unit.

With all the costs of moving around, it may be that a unit has movement points left, but not

enough to meet the full cost of a desired move action. You can allow player extra movement points

to complete the action by setting free-mp to e�ectively add the needed mp.

A hit on a complete unit should reduce by whole cp/hp, otherwise it will appear to be incomplete.

Xconq will not �x this, you have to arrange all the numbers yourself, or run the risk of player

confusion.

Bases should "anti-protect" aircraft in games involving both, but �ghters should protect the

base.

Veason temp values of 40, 20, 5, -40 make earthlike.

4 May 1995DRAFT d35 DRAFT d35

Chapter 3: Designing Games with XconqXconq 120

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 121

4 ReferenceManual

This manual is the complete description of GDL. The style is somewhat terse; for more detail

on how to use GDL to design games, see Chapter 3.

Please note that the current version of Xconq may not fully implement all of the constructs or

combinations of constructs described here. Any such omissions should be regarded as bugs.

4.1 Language Syntax

GDL resembles Lisp, but instead of de�ning functions, the contents of a �le declare certain

objects (such as units and unit types) to exist, and specify values for their properties. In other

words, GDL is nonprocedural. This means that most of the time, you can list the various forms

in any order you like. The main restriction is that any symbol, such as a variable or the name of

a type, must be de�ned before it is used. Also, forms such as set and add, that set the value of

a variable or property, always overwrite the previous data irreversibly, so ordering of these is very

important.

4.1.1 Lexical Elements

Numbers are introduced by a decimal digit, plus, or minus signs. They may contain only decimal

digits, a decimal point, and be followed (immediately, no whitespace allowed) by a percent sign or

a recognized unit of measure.

Strings are sequences of characters enclosed by doublequotes ("). They may contain any char-

acter except ASCII NUL ('\0'). To include a doublequote, use backslash, as in "a \"quoted\"

string". To include a nonprinting or eight-bit character, use backslash followed by three octal

digits, which will be interpreted as an eight-bit character code. (This is mostly the same syntax

as in C.) Note that game design �les may be passed over networks and between di�erent kinds of

computer systems, so non-ASCII characters should not be inserted verbatim into strings.

Symbols are sequences of characters that don't include any of the other special characters. If you

wish to include such characters in a symbol, enclose it in vertical bars, for example |foo bar|. (The

bars are not part of the symbol.) Symbols are case-sensitive, but this will be changed eventually.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 122

Lists are a sequence of expressions enclosed in parentheses. The empty list is either nil or ().

\Dotted pairs" are not allowed. Anything that is not a list is an atom.

All of these objects may range up to a very large size. (You may still run into bugs if you make

strings or symbols over about 100 chars in length.)

Comments are enclosed either within #| |# (which nests properly, like Common Lisp and unlike

C), or else extend from a semicolon ; to the end of the line. A comment is equivalent to whitespace,

so (a#|bcd|#e) is the same as (a e), not (ae).

by itself is a normal token.

True/false values are just the integers 0 and 1, with no special characteristics.

GlobalConstanttrue

GlobalConstantfalse

These constants are symbolic forms for 1 and 0. They are identical to numbers, but

more descriptive for parameters that are boolean-valued.

Unit, material, and terrain types are distinct objects. However, they can be considered to have

numeric \indices" assigned in order of the types' de�nition. These numbers are not directly visible

in GDL, but they often a�ect sorting and ordering.

4.1.2 Conventions Used

Descriptions of values in this manual follow the conventions listed here.

For parameters described as t/f, both 1, 0 and true, false may be used. Parameters described

as n and n% are numbers. Parameters described as dist or length are also numbers, but are in the

unit of measure for lengths. Parameters described as str or string are strings.

Parameters described as u or ui, m or mi, and t or ti, are values that must be unit, material, or

terrain types, respectively.

Parameters described as utype-value-list match unit types with values. They can have several

forms:

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 123

(n1 n2 ...) matches n1 with type 0, etc in order.

((u1 n1) (u2 n2) ...) evaluates u1 to get a unit type, then matches it with n1. u1 etc may

also be a list of types, in which case all the types get matched with n1.

Other types of lists, such as those de�ned as side-value-list, are interpreted similarly. For all of

these, multiple assignments to the same type etc will overwrite quietly.

4.1.3 Forms and Evaluation

A form is either any single expression that appears in the �le. A GDL �le consists of a sequence

of forms. Most forms of interest will be lists whose �rst element is a symbol identifying the form. For

instance, a form beginning with the symbol side declares a side object. When the �le containing

such a form is read, Xconq will create a side object and �ll in any properties as speci�ed by the

form. (Properties are like properties or attributes - most GDL objects have some.)

In most contexts, Xconq will evaluate an expression before using it, such as when �lling in an

object's property. Numbers and strings evaluate to themselves, while symbols evaluate to their

bindings, as set by set or define. Lists evaluate to a list of the same length, but with all the

elements evaluated, unless the �rst element of the list is a function. In that case, the remaining

elements of the list are evaluated and given to the function, and its result will be the result.

4.1.4 Tables

A table is a two-dimensional array of values indexed by types. Indices can be any pair of unit,

material, or terrain type. The set of tables is �xed by Xconq, and all are described below.

Formtable table-name items. . .

This is the general form to �ll in a table. The table named by table-name is �lled in

from the items. If an item is an atom, then every position in the table is �lled in with

that item, overwriting any previously-speci�ed values. If an item is a list, it must be a

three-element list of the form (type1 type2 value). If both type1 and type2 are single

types, then value will be put into the table at the position indexed by the two types.

If one of type1 or type2 evaluates to a list, Xconq will iterate over all members of the

list while keeping the other type constant, while if both type1 and type2 are lists, then

Xconq will iterate over all pairs from the two lists. The values used during iteration

depend on whether the value is a list. If value is an atom, then that value will just be

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 124

used on every iteration. If a list, then Xconq will use successive elements of the list

while iterating.

If the �rst member of items is the symbol add, then the rest of the items will add to

the existing contents of the table rather than clearing to its default value �rst.

The following forms are all equivalent:

(table foo (a y 1) (b y 2) (c y 3) (a z 9) (b z 9) (c z 9))

(table foo ((a b c) y (1 2 3)) ((a b c) (z) 9))

(define v1 (a b c))

(table foo (v1 y (1 2 3)) (v1 z 9))

(table foo ((a b c) (y z) ((1 2 3) (9 9 9))))

(table foo (a y 1) (b y 2) (c y 3))

(table foo add ((a b c) z 9))

4.1.5 Modifying Objects

Since forms normally de�ne or create new objects, GDL de�nes the add form to modify existing

objects.

Formadd objects property new-values. . .

This form evaluates the atom or list objects to arrive at the set of objects to be modi�ed.

Then it uses the new-values to write new data into the property named property of

those objects. The new-values may be a single number or string, or a list.

4.1.6 Symbols

Most of the symbols used in a game module are the prede�ned ones described in this manual.

Others are attached to types when the types are de�ned, and still others name objects like units

and sides. You can also de�ne and set your own symbols to arbitrary values.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 125

Formdefine symbol value

This form de�nes the symbol symbol to be bound to the result of evaluating value. If

symbol is already de�ned, Xconq will issue a warning, and ignore this form.

Formset symbol value

This form rebinds the already-bound symbol symbol to be bound to the result of

evaluating value. If symbol is not bound already, then Xconq will issue a warning, but

proceed anyway.

Formundefine symbol

This form destroys any binding of the symbol. This is allowed for any symbol, including

already-unbound symbols.

4.1.7 Lists

Functionquote xxx. . .

This function prevents any evaluation of xxx. (This implies that the abovementioned

evaluation of the argument list does not happen for this \function".)

Functionlist xxx. . .

This function makes a list out of all the xxx.

Functionappend xxx. . .

This function appends all the xxx (which may be lists or not) into a single list. Non-lists

will appear as though they were single-element lists.

Functionremove list1 list2

This function removes the members of list1 from list2, returning the result.

4.2 GameModules

The game module declaration supplies information about the �le as a whole. It is optional; if

missing, Xconq will get the module's name from its �le name, and supply defaults for the other

properties.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 126

Formgame-module [name] properties. . .

This form de�nes the properties of this game module. The optional name is a string

that will be used to look up the module in libraries. If the name is supplied, then this

form is considered to be the de�nition of the module, and overwrites any game-module

form previously appearing in this �le. If name is missing, then this form will modify

the existing description of the module.

ModulePropertytitle string

If de�ned, this property is the name by which the module will be displayed to players.

It is not used internally, so the name can be modi�ed freely (unlike the module's name,

which may appear in other modules). Defaults to the module's name.

ModulePropertyblurb string

This property is a one-line description that users will see when they are deciding

whether to play the module. It will be displayed without any modi�cation:

Welcome to my nightmare! (version 1.0 with stronger goblins)

Defaults to "".

ModulePropertypicture-name string

This property is the name of a picture that may be displayed along with the module's

blurb, by those interfaces that support such pictures. Defaults to "".

ModulePropertybase-game t/f

ModulePropertyinstructions strings. . .

This property is a list of strings that are the instructions on how to play the game.

Defaults to ().

ModulePropertynotes strings. . .

This property is a list of strings comprising the set of detailed player's notes for the

module. Both the list and each string in the list can be of any length. When displayed,

the strings are all concatenated together, so the division into strings here is just for

convenience. How these are displayed is up to the interface, but in general an empty

string signals a new paragraph. Defaults to ().

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 127

ModulePropertydesign-notes strings. . .

This property is a list of strings that are notes addressed to game designers. Defaults

to ().

ModulePropertyversion string

This property is the version of the module. Defaults to "", which indicates that the

module's version is unde�ned.

ModulePropertyprogram-version versions

This property denti�es Xconq versions for which this module is appropriate. If speci�ed,

then players will get a warning if they attempt to use this module with an inappropriate

version of Xconq. Possible forms include a string, which allows the module only for

exactly matching version of Xconq, and (comparison version), which allows versions

satisfying the comparison test, which may only be >= or <=. So for instance

(game-module "foo" (program-version (>= "7.0.3")))

is claimed to only work for versions 7.0.3 or later. Defaults to "", which means that

the module is appropriate for any version of Xconq.

Notes that the program-version is strictly a heuristic to forewarn players; in practice it

can be very di�cult to know which modules work with which programs. (The problems

are similar to those encountered by programmers using di�erent compiler versions on

their programs.)

ModulePropertybase-module name

This property is the name of a module that must be loaded �rst. It is similar in e�ect

to include.

ModulePropertydefault-base-module name

This property speci�es the name of a module that will be loaded if this module is given

as the \top-level" module, such as via -g on a command line.

This is to prevent disasters when a library module that is used only by other modules

is instead loaded as if it were a full game design.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 128

4.2.1 Variants

Variants are options chosen by players at the start of a game. A generic variant includes

information that will be used for displaying the choice to players, the acceptable range of choices, a

default choice, and additional forms that may be evaluated if particular values were chosen. Variant

values are always numbers.

ModulePropertyvariants items. . .

This property de�nes named variants on this module. Variants appear as startup

options for the game. The items have the form ([name] type [range/default]

[clauses]). The name is a string or symbol used to identify the choice to the players,

the type says what sort of change is being enabled, range/default supplies a range

of values and a default value among them, and clauses is a list of the form (value

forms. . .). A game module may specify any number of variants. Defaults to ().

A number of commonly useful variant types are prede�ned.

VariantTypeworld-size [width [height [circumf [lat [lon]]]]] [clauses]

This variant allows players to choose the size of the world. The sizes will default to the

values in this variant's data. (width and height can be lists of the form (lo dflt hi),

with the obvious interpretation??)

VariantTypeworld-seen [d
t] [clauses]

This variant allows players to choose whether the terrain of the world will be known at

the start of the game. The default setting will be the value dflt, which may be either

true or false.

VariantTypesee-all [d
t] [clauses]

This variant allows players to choose whether everything will be seen always, as with

the global variable see-all. The default is set by dflt.

VariantTypesequential [d
t] [clauses]

This variant allows players to choose whether to move simultaneously during a turn,

or one at a time. The default is set by d
t.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 129

VariantTypereal-time [total [perside [perturn]]] [clauses]

This variant allows players to choose realtime limits on the game. The value will default

to the values in this variant's data.

4.2.2 Including Other Modules

You can include one game module in another.

Forminclude [if-needed] module-name [variant-settings]

This form has the e�ect of inserting the contents of module-name into the current

position in the module. game-module forms in the included module are not inserted,

although they are remembered and may appear in displays. Xconq will fail completely

if the included module cannot be found.

Unlike C etc, the same module cannot be included more than once; you will get a

warning and the module will not be loaded.

Note that the module names are not �le names, so that system-speci�c features like directories

and devices cannot be included. The mapping between module name and �le name is interface-

speci�c, so if you want to distribute a module, you should make sure all the module names don't

have anything nonportable embedded. Alphanumeric characters and hyphens are guaranteed to be

portable.

4.2.3 Conditional Loading

You can control which forms in a module are actually evaluated by using conditional loading.

Formif test-form sym

Formelse sym

Formend-if sym

If test-form evaluates to true, then all subsequent forms, up until the matching else

or end-if, will be evaluated. If false, then the forms will be read but not evaluated.

All forms inside the conditional must be syntactically correct.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 130

4.3 TheWorld

The world consists of one area, which is regular in shape and consists of a number of cells. Each

cell has a type of terrain and a number of optional data values. Each kind of per-cell data will be

called a layer of the area.

Formworld [circumference] properties. . .

This form de�nes the properties of the world as a whole.

WorldPropertycircumference dist

This property is the distance around the entire world (as a sphere). Default is 360.

WorldPropertyaxial-tilt n

This property de�nes the extremes of seasonal changes.

Formarea [width [height]] [restriction] properties. . .

This form de�nes the playing area of the world. The restriction identi�es how to get

data for this area from subsequent forms that are based on larger areas.

AreaRestrictionrestrict w h x y

This is a special form that speci�es that subsequent layers in an area of size w x h will

be o�set by x,y and then read into the actual area. (This is useful for setting up a

game that needs only a subset of a full map.)

Note that an area restriction is not a property, and must always appear before any

properties in an area form.

AreaPropertywidth n

AreaPropertyheight n

These properties are the width and height of the world, as measured in cells. Allowable

values range from 3x3 up to 32767x32767, which is one billion cells! If only one of these

is given, then the other defaults to the same value. If neither has been given, then they

default to 60 and 30, respectively.

In the case of a cylinder, the world wraps around in the x direction, and the width is the diameter

of the cylinder, while the height is just the height in the usual sense. A hexagon world is
at on

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 131

the top and bottom; its width is measured across the middle height, which is the largest span, and

height is the same as for cylinders. Here are some crude pictures, �rst of an 8x6 cylinder:

#

: : + + : : : :

: : : + ^ : : :

: : : : : : : :

: : : : ^ : : :

#

This world is an 8x7 hexagon:

#

: + + :

: : + ^ :

: : + ^ : :

: : : : :

: : ^ :

#

There are two kinds of properties that an area may have: scalar values such as latitude, and

layer values such as terrain and elevation.

AreaPropertylatitude n

This property is the o�set, in cells, from the equator of the middle of the area (height

/ 2). Defaults to 0.

AreaPropertylongitude n

This property is the o�set, in cells, from the \Greenwich Meridian" of the world.

Defaults to 0.

4.3.1 Layers

Layers constitute the bulk of data about an area of the world. Each layer assigns a value to each

cell in the area; examples include cell terrain, temperatures, elevations, and so forth. Since there

may be many cells in a layer with the same values, each layer uses a common run-length encoding

scheme. In this scheme, each horizontal band of cells is a separate text string, and the contents of

the string encode individual numeric values, one for each cell. The encoding uses the characters

a..~ and :..[for 0 through 63, and decimal digits followed by commas (or the end of the string)

for all other numbers. An optional - is allowed, and indicates a negative value. Runs of constant

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 132

value are pre�xed with their length, in decimal. The character * separates run lengths from values

expressed as digits. Thus, the string

"40adaa100,2*-99"

represents 46 values in all: 40 zeroes, a three, 2 more zeros, a 100, and two -99s. Although this

format is quite unreadable, it has the advantages of compactness and portability; the expectation

is that most layer editing will be done on-line. Note that the run encoding is entirely optional.

The following subforms at the beginning of layer data have special e�ects:

LayerSubformconstant n

This subform causes every value in the layer to be set to n.

LayerSubformsubarea x y w h

This subform indicates that the layer data should be positioned at the given rectangle

in the layer.

LayerSubformxform mul add

This subform has the e�ect of �rst multiplying the raw value by mul, then adding add

and storing the result into the layer.

LayerSubformby-bits

LayerSubformby-char str

This subform speci�es that the characters in str give the encodings of values in the

layer. The �rst character in str encodes 0, the second encodes 1, and so forth.

LayerSubformby-name name-list

[what is the syntax of name-list exactly?] This subform is for generic worlds that are

useful across multiple game designs. The value/name pairs allow for the matching of

terrain types by name, so that if, say, the \sea" terrain type was type #0 in one game

and type #4 in another, the world would have sea in all the same places after it was

read in. In practice, only a few worlds are this general. If a named terrain type is not

present, Xconq will warn about it and substitute type 0.

AreaPropertyterrain layer-data. . .

This property is the actual layer of terrain types for cells.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 133

AreaPropertyaux-terrain terrain-type layer-data. . .

This property �lls in values for borders, connections, and coatings. For border and

connection terrain, the value is a six-bit number (0..63), with a bit turned on in each

direction that there is a border or connection. For coating types, the value is the depth

of the coating.

AreaPropertyfeatures feature-list layer-data. . .

This property speci�es the nature and location of all geographical features. The feature-

list is a list of lists, where each sublist has the form ([id] typename name [super])

where id is the numerical id referenced in the layer data (defaults to feature's position

in the feature-list), typename is a symbol or string giving the general type of feature

(such as bay), name is the name of the feature (such as "Bay of Bengal"), and super

is the optional id of another feature that incorporates this feature.

AreaPropertymaterial material-type layer-data. . .

This property declares the quantity of the given material-type in each cell of the area.

AreaPropertypeople-sides layer-data. . .

This property says which side the people of each cell are on. A side-encoding of exact

assigns 0 to independence (no side), 1 to the �rst side, and so forth; otherwise, the

encoding is a list of side names/ids and numbers.

4.3.2 Distances and Elevations

AreaPropertyelevations layer-data. . .

This property is the world elevation data itself. If any elevation falls outside the

min/max elevation range for the terrain type of the cell, then it will be truncated

appropriately. Defaults to 0 for each cell.

AreaPropertycell-width dist

This property is the distance across a single cell, expressed as units of elevation. De-

faults to 1.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 134

4.3.3 Temperatures

Each type of terrain has a temperature range in which it may be found. Any calculation that

would fall outside this range will be clipped.

The temperature can be set to have a given value at a given elevation. All air temperatures will

be interpolated appropriately.

GlobalVariabletemperature-floor n

This variable is the lowest possible temperature. Defaults to 0.

GlobalVariabletemperature-floor-elevation n

This variable is the elevation at which the temperature is always at temperature-

floor. Defaults to 0.

AreaPropertytemperatures layer-data. . .

This property contains the temperature data itself. If any temperature falls outside

the min/max temperature range, then it will be truncated appropriately. Defaults to

0 for each cell.

4.3.4 Winds

Winds are de�ned as having a nonnegative force and a direction.

AreaPropertywinds layer-data. . .

This property contains the force and direction of the prevailing winds in each cell.

4.3.5 Clouds

Cloud cover is de�ned as a layer over the terrain, with a bottom and top and density for each

cell. In the example below, o and O represent di�erent densities of cloud, and - show the tops and

bottoms, while ^ shows the ground.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 135

---- -

--oOOo -- O

OOoOOo oo--O

--oOO- --OOO

--- ---

^^^^^^^^^^^^^^^^

AreaPropertyclouds layer-data. . .

This property is the degree of cloud cover over each cell. A value of 0 corresponds to

clear skies.

AreaPropertycloud-bottoms layer-data. . .

This property is the altitude above the ground of the bottoms of the clouds.

AreaPropertycloud-heights layer-data. . .

This property is the vertical thickness of the cloud cover in each cell.

4.4 Sides

Formside [id] properties. . .

This form has the e�ect of declaring a side to exist. If the number or symbol id is

supplied and matches that of a side that has already been created, then the properties

will modify the pre-existing side. Otherwise a new side object will be created, with a

arbitrarily-chosen numeric id ranging between 1 and sides-max. If the given id is a

symbol, then the side's numeric id will be bound to that symbol.

GlobalVariablesides-min n

GlobalVariablesides-max n

These variables are the minimum and maximum number of sides that may exist in a

game. Defaults are to 1 and the internal parameter MAXSIDES, which is usually around

7. MAXSIDES can only be changed by recompiling Xconq.

Formside-defaults properties. . .

This form sets the defaults for all newly-created sides declared subsequently. These

defaults will be set before the new side's properties are interpreted. This form has no

e�ect on existing sides or on side declarations that modify existing sides.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 136

4.4.1 Name and Related Properties

If the game design allows, all of these properties can be set at startup by the players (see <side

con�g> and below). Omission of some of these results in suppression or substitution, depending on

the interface and the situation. Omission of all name properties allows the side to go unmentioned,

which is useful when the concept of \side" is useless or confusing to a player (as in some adventure

games). All of these properties may be set at any time by any player.

SidePropertyname str

This property is the proper name of a side, as a country or alliance name. Examples

include "Axis" and "Hyperborea". Defaults to "".

SidePropertylong-name str

This property is the long form of a side's name, as in "People's Republic of

Hyperborea". Defaults to be the same as the side's name.

SidePropertyshort-name str

This property is an short name or acronym for the side, often just the letters of the

long name, as in "PRH". Defaults to "".

SidePropertynoun str

This property is the name of an individual unit or person belonging to the side. De-

faults to "", which suppresses any mention of the side when (textually) describing the

individual.

SidePropertyplural-noun str

This property is what you would call a group of individuals. Defaults to the most

common plural form of the noun (in English, the default pluralizer adds an \s"), so any

alternative plural noun, such as "Chinese", will need an explicit plural-noun value.

SidePropertyadjective str

This property is an adjective that can be used of individuals on the side, as in

"Spanish". Defaults to "", which suppresses use of the adjective.

As a complete example, a side named "Poland" would have a long name "Kingdom of Poland",

short name "Po", noun "Pole", plural noun "Poles", and adjective "Polish".

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 137

SidePropertycolor str

This property is a comma-separated list of colors that represents the side. Defaults to

"black".

SidePropertyemblem-name str

This property is the name of a graphical icon that represents the side. An emblem

name of "none" suppresses any emblem display for the side. Defaults to "", which

gives the side a randomly-selected emblem.

SidePropertynames-locked t/f

If the value of this property is true, then the player cannot modify any of the side's

names. Defaults to false.

4.4.2 Side Class

SidePropertyclass str

This property is a side's class, which is a keyword that characterizes the side. Any

number of sides may be in the same class. Defaults to "".

4.4.3 Status in Game

Once a side is in the game, it can never be totally removed. However, sides can become inactive.

SidePropertyactive t/f

This property is true if the side is still actively participating in the game. If the side

has won, lost, or simply withdrew, this will be false. Any units on a side not in the

game are e�ectively frozen statues; they don't do anything, and are untouchable by

anyone else. Defaults to true.

SidePropertystatus lose/draw/win

This property tells how this side did in the game. Defaults to draw.

GlobalConstantwin

GlobalConstantdraw

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 138

GlobalConstantlose

These constants are the di�erent possible values for a side's status.

SidePropertyadvantage n

SidePropertyadvantage-min n

SidePropertyadvantage-max n

Initial and min/max limits on advantage for the side. All default to the values of the

corresponding global variables.

4.4.4 Side Relationships

By default, sides are neutral with respect to each other.

Control is a situation where one side can observe and move another side's units, but not vice

versa. The controlling side can also just take the units of the controlled side. If the controlled side

loses or resigns, then the controlling side automatically gets everything. Both sides must agree to

this relationship.

SidePropertycontrolled-by side

This property refers to the side controlling this one. If 0, then the side is not under

control. Defaults to 0.

The closest side relationship is one of trust. A trusted side unit's may do anything at any time,

including entering and leaving units on the other side, consuming the other side's materials, and

so forth.

SidePropertytrusts side-value-list

This property is true for any side that is trusted by this side. Note that this relationship

need not be symmetrical. Defaults to false for all sides.

Note that these parameters apply only to relationships as enforced by Xconq. In an actual game,

both human and robot sides can make agreements and have positive/negative opinions about the

other sides.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 139

SidePropertytrades side-value-list

This property de�nes the trading relationship with other sides. Defaults to 0 for all

sides.

4.4.5 Numbering Units

SidePropertynext-numbers utype-value-list

This property gives the next serial numbers that will be assigned to units acquired by

this side. Defaults to 1 for each unit type (Dijkstra notwithstanding, that's still where

people start numbering things).

If the unit is of a type that gets numbered (assign-number property is true), then any unit of

that type, acquired by any means whatsoever, will be assigned the next-numbers value for that

type and next-numbers will be incremented.

4.4.6 Side-Speci�c Namers

A side can have its own set of namers (see below) that will be used for units and geographical

features associated with that side.

SidePropertyunit-namers utype-value-list

This property speci�es which namers will be used with which types that the side starts

out with or creates new units. These will not be run automatically on captured units

or gifts. Defaults to "" for each unit type.

SidePropertyfeature-namers feature-type-value-list

This property speci�es which namers to use with which geographical features in the

side's initial country (if if has one). Defaults to ().

4.4.7 Tech Levels

The tech level of a side determines what it can do with each type of unit.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 140

SidePropertytech utype-value-list

This property assigns a tech level to each unit type named. Defaults to 0 for each unit

type.

SidePropertyinit-tech utype-value-list

This property is the tech level at the beginning of the current turn. Defaults to 0 for

each unit type.

4.4.8 Views

These properties are necessary only if the relevant globals are set a certain way (see-all is

false, etc).

SidePropertyterrain-view layer-data. . .

This property is the side's current knowledge of the world's terrain. Defaults to ().

SidePropertyunit-view layer-data. . .

This property is the side's current knowledge of the world. Defaults to ().

SidePropertyunit-view-dates layer-data. . .

This property is the turn number at which the unit view data in the corresponding cell

of the unit-view was set. Defaults to ().

4.4.9 Interaction

SidePropertyturn-time-used seconds

This property is the number of (real) seconds that this side has been moving units

during the present turn. Defaults to 0.

SidePropertytotal-time-used seconds

This property is the number of (real) seconds that this side has been moving units

during the course of the game. Defaults to 0.

SidePropertytimeouts n

This property is the number of \time outs" a side gets for the game. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 141

SidePropertytimeouts-used n

This property is the number of \time outs" a side has already used up. Defaults to 0.

SidePropertyfinished-turn t/f

This property is true if the side has declared that it is �nished moving things during

this turn. Defaults to false.

SidePropertywilling-to-draw t/f

This property is true if the side will go along with any other side that wants to end the

game in a draw. Defaults to false.

SidePropertyrespect-neutrality t/f

SidePropertyreal-timeout seconds

This property is the number of (real) seconds to wait before declaring the side to be

�nished with this turn. Defaults to -1, which waits forever.

SidePropertytask-limit

This property is the maximum number of tasks a unit is allowed to stack up.

4.4.10 Doctrine

Doctrines are objects that units consult to decide about individual behavior.

SidePropertydoctrines utype-property-groups. . .

This property is the side's unit-type-speci�c doctrine. Each utype-property-group has

the form (unit-types doctrine). Defaults to ().

SidePropertydoctrines-locked t/f

This property says whether the docrine-unit type correspondence for the side may be

altered during the game. This property does not control whether or not the properties

of the doctrines may be altered. Defaults to false.

Formdoctrine [id] properties. . .

This form creates a doctrine with the given id and properties.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 142

DoctrinePropertyever-ask-side t/f

This property is the true if the unit may ask the player for what to do, instead of

picking some default activity.

DoctrinePropertyavoid-bad-terrain n%

This property is the probability that the unit will not enter unhealthy terrain, even if it

delays meeting goals. Unhealthy means higher attrition and accident probs, materials

consumed faster than replaced, slower movement. Defaults to 0.

DoctrinePropertyrepair-at n%

This property indicates that when the unit's hp is at n% of max, make a plan to repair.

Defaults to 50.

DoctrinePropertyresupply-at n%

This property indicates that when the level of a operationally-consumed material is at

n% of capacity, try to resupply. Defaults to 50.

DoctrinePropertyrearm-at n%

This property indicates that when the level of a combat-consumed material is at n%

of capacity, try to resupply. Defaults to 50.

DoctrinePropertylocked t/f

This property is true if the properties of the doctrine cannot be modi�ed by the side's

player during the game. Defaults to false.

4.4.11 Other

SidePropertyself-unit unit

This property is the id of a unit that represents the side itself. Defaults to 0, which

means that no unit represents the side. See below for more details on self units.

SidePropertypriority n

The order in which the side will get to act, relative to other sides and to units. Defaults

to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 143

SidePropertyscores (skid val). . .

This property is the current values of any numeric scores being kept for the side. It is

a list of pairs of scorekeeper id and value. Defaults to ().

Formindependent-units properties. . .

Like the side form, but sets properties for independent units.

SidePropertyui-data data. . .

This property contains interface-speci�c data for the side. This is mainly for preserva-

tion across game save/restores, and its form is de�ned by the interface.

SidePropertyai-data data. . .

This property is information about the AIs associated with a side. The format and

content of data is determined by the type(s) of the AIs. Defaults to ().

4.5 Players

Player objects are rarely necessary when building game designs; they typically only appear in

saved games, in order to ensure that the same players get the same sides upon restoration.

SidePropertyplayer id

This property is the unique identi�er of a player that is running this side. Defaults to

0, which means that no player has been assigned to the side.

Formplayer [id] properties. . .

This form de�nes a player. If the id is supplied and matches the id of an existing

player, then the player object is updated using the properties, otherwise a new player

object will be created, using the given id if supplied, otherwise creating a new value.

GlobalVariableplayer-sides-locked t/f

This variable is true if the player/side assignment may not be changed while the game

is starting up. Defaults to false.

The number of players must always be less than the number of sides (sides without players just

don't do anything).

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 144

PlayerPropertyname str

This property identi�es the player by name. Defaults to "".

PlayerPropertyconfig-name str

This property identi�es a particular set of doctrine and other de�nitions that the player

is using. Defaults to "".

PlayerPropertydisplay-name str

This property identi�es the display being used by the player's interface. The interpre-

tation of this value is dependent on the interface in use. Defaults to "".

PlayerPropertyai-type-name str

This property is the type of AI that will play the side if requested or necessary. The set

of choices depends on what has been compiled into Xconq. (The general-purpose AI

type "mplayer" will usually be available, but is not guaranteed.) An ai-type-name of

"" means that no AI will run this player. Defaults to "".

PlayerPropertypassword str

This property is the encoding of a password that must be entered before this player

object can be reused successfully. Defaults to "".

PlayerPropertyinitial-advantage n

This property is an initial relative strength at which the player should start. Some

synthesis methods can use this to give more units or some other advantage to each

player according to the requested strength. Defaults to 1.

GlobalVariableadvantage-min n

GlobalVariableadvantage-max n

GlobalVariableadvantage-default n

These variables set the bounds and default values for players' initial advantages. De-

fault to 1, 9999, and 1, respectively.

Xconq is not guaranteed to be able to be able to set up a game with any combination of player

advantages; the limits depend on the capabilities and characteristics of the synthesis methods that

use the requested advantages in their calculations.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 145

4.5.1 Rules of Side Con�guration

The properties of a side can come from a number of di�erent sources (here listed in order of

precedence):

Interface-speci�c sources (X resources, Mac preferences).

Game-speci�c form in player's con�guration �le.

Generic form in player's con�guration �le.

The side form for the side.

The side-defaults form for the game.

General program defaults.

Note that interface-speci�c and general con�g �les can never alter certain properties of a side,

and can only alter others if they are not locked.

4.6 Units

The basic unit form creates or modi�es a unit.

Formunit id [type] properties. . .

This form de�nes a unit. If a numeric id is supplied and matches the id of an existing

unit, then that unit will be modi�ed by properties, and the optional type will be

interpreted as a new type for the unit. Otherwise a new unit will be created, with

either id as its id or a arbitrarily-selected one if id is already in use. If the unit's id is

newly-generated and no type has been speci�ed, then type #0 (�rst-de�ned type) will

be the type of the unit. An id of 0 can never match an existing unit id, so e�ect will

be as if it had been omitted.

Formunit-type-name x y [side-id] properties. . .

This is an abbreviated form, in which the x,y position is required, and an optional side

id may be included. The side id will come from unit-defaults if not speci�ed. The

unit-type-name may be any valid unit type name or de�ned name. This form always

results in a new unit.

Since there may be many units whose properties are similar, there is a \default unit" whose

properties �ll in missing properties in individual unit declarations.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 146

Formunit-defaults [modi�er] properties. . .

This form sets the default values for all subsequent units read in, in this and every

other module not yet loaded. The set of defaults is additive, so for instance you can

repeatedly change the default side of units. If the symbol reset has been supplied for

the optional modi�er, then all the defaults will be changed to the basic default values,

as described in this manual.

Symbolreset

This is the symbol used to reset unit defaults; see above.

4.6.1 Unit Properties

This section lists properties of individual units. In general, they default to the most common

or reasonable values, so need not always be speci�ed, even in a saved game.

UnitProperty@ x y [z]

This property is the position of the unit. Defaults to -1,-1,0, which causes the unit

to be placed randomly. The optional altitude z can also be set separately with the

property z below. If z is even and the unit is in the open, then the unit's altitude is

z/2 ; if z is odd, then (z-1)/2 is the type of connection terrain that the unit is on.

UnitPropertyz z

This property is identical to the optional z part of the @ property. Defaults to 0.

UnitPropertys side

This property is the side of the unit. It can be either a side name/noun/adjective

(string) or id (number). A value of 0 or "independent" means that the unit is inde-

pendent. Defaults to 0.

UnitProperty# n

This property is the unique numeric id of the unit. Defaults to a game-selected value.

UnitPropertyn str

This property is the name of the unit. Defaults to "".

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 147

UnitPropertynb n

This property is the number of the unit, which starts at 1 and goes up. Defaults to 0,

which means that the unit is unnumbered.

UnitPropertycp n

This property is the current completeness of the unit. If negative, indicates that the

unit will appear at a time and place speci�ed by the appear x-property. Defaults to

the cp-max for the type.

UnitPropertyhp n

This property is the current hit points of the unit. Will be restricted to the range [0,

hp-max]. An hp of 0 means that the unit is dead and will not appear in the game.

Defaults to hp-max for the unit's type.

UnitPropertycxp cxp

This property is the combat experience of the unit. Defaults to 0.

UnitPropertymo n

This property is the morale of the unit. Defaults to 0.

UnitPropertym mtype-value-list

This property is the amounts of supplies being carried by the unit. Defaults to 0 for

each material type.

UnitPropertytp utype-value-list

This property is the level of tooling to build each type of unit. Defaults to 0 for each

unit type.

UnitPropertyin n

This property is the id of the unit's transport. Defaults to 0, meaning that unit is not

in any transport.

UnitPropertyopinions side-value-list. . .

This property is the unit's true feelings towards each side, including its own side.

Defaults to 0 for each side.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 148

UnitPropertyx obj

This property is the optional extension properties of the unit. Its value may be any

object. Defaults to ().

Symbolappear

Symboldisappear

These are extension properties that indicate when and where a unit will appear in the

game, and when it will disappear. [syntax?]

4.6.2 Unit Action State

UnitPropertyact subprops

This property speci�es the current action state of the unit.

UnitActionStatePropertyacp n

This property is the number of action points left to the unit for this turn. Defaults to

0.

UnitActionStatePropertyacp0 n

This property is the initial number of action points for this turn, computed at the

beginning of the turn. Defaults to 0.

UnitActionStatePropertyaa n

This property is the actual number of actions executed by the unit so far in the current

turn. Defaults to 0.

UnitActionStatePropertyam n

This property is the actual number of moves (cell entries) executed so far in the current

turn. Defaults to 0.

UnitActionStatePropertya action

This property is the next action that the unit will perform.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 149

Note that if any unit-de�ning form has an act property, Xconq will start at an appropriate

point in the middle of a turn, giving all other units zero acp and mp, rather than starting at the

beginning of the turn and computing acp and mp for all units.

4.6.3 Unit Plan

UnitPropertyplan type [subtype] properties. . .

This property describes the unit's current plan.

PlanTypenone

A unit with this type of plan does nothing. It is used when a side has no player.

PlanTypepassive

This plan type is for units on a side that is being run directly by the side.

PlanTypedefensive

This plan type is for units that defend areas or other units.

PlanTypeexploratory

This plan type is for units that explore the world.

PlanTypeoffensive

PlanTyperandom

A unit with this plan type will act randomly.

PlanPropertygoal

This property is the main goal of a unit's plan.

The possible types of goals are these:

GoalTypeno-goal

GoalTypewon-game

GoalTypelost-game

GoalTypeworld-is-known

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 150

GoalTypevicinity-is-known

GoalTypepositions-known

GoalTypecell-is-occupied

GoalTypevicinity-is-held

GoalTypehas-unit-type

GoalTypehas-unit-type-near

GoalTypehas-material-type

GoalTypekeep-formation

[also support some kind of hook for speci�c AIs?]

PlanPropertytasks tasks. . .

This property is the complete task agenda for the unit's plan. It is a list of tasks.

Defaults to ().

TaskTypebuild u n n2 unit-id

TaskTypecapture unit-id

TaskTypedo-action action

TaskTypehit-position x y z

TaskTypehit-unit unit-id

TaskTypemove-dir dir

TaskTypemove-to x y z dist

TaskTypeoccupy unit

TaskTypepickup unit

TaskTyperepair unit

TaskTyperesupply

TaskTypesentry n

PlanPropertyasleep t/f

This property is true if the unit is asleep. Defaults to false.

PlanPropertyreserve t/f

This property is true if the unit is in reserve. Defaults to false.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 151

PlanPropertywait t.f

This property is true if the unit is waiting for orders. Defaults to false.

PlanPropertyformation goal

4.7 Agreements

Formagreement [name/id] properties. . .

This form de�nes an agreement among a set of sides. The name/id is a unique internal

identi�er.

AgreementPropertytype-name str

This property is the name of the general type of agreement, such a trade. Defaults to

"".

AgreementPropertytitle str

This property is the player-visible name of the agreement. Defaults to "".

AgreementPropertyterms forms. . .

This property is the list of terms of the agreement. Defaults to ().

AgreementPropertydrafters side-list

This property is the side that initially proposed the agreement.

AgreementPropertyproposers side-list

This property is the side that initially proposed the agreement.

AgreementPropertysigners side-list

Before the agreement is made, this property is the proposed list of participants. After

the agreeement is made, this is the actual list of participants.

AgreementPropertywilling-to-sign side-list

This property is all the sides that have already agreed to this agreement, on condition

that all the other sides accept it.

AgreementPropertyknown-to side-list

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 152

AgreementPropertyenforcement form

[include values such as enforced and publicity?]

AgreementPropertystate state

[add symbols for states]

4.8 Scorekeepers

Scorekeepers are the objects that manage scoring, winning, and losing. A game design need

not de�ne any scorekeepers, and none are created by default. A scorekeeper may either maintain

a numeric score that is used at the end of the game to decide rankings, or simply declare a side to

have won or lost.

Formscorekeeper name properties. . .

This form creates or modi�es a scorekeeper with the given name, with the given prop-

erties.

ScorekeeperPropertytitle str

This property is a string that identi�es the scorekeeper to the players. Defaults to "".

ScorekeeperPropertywhen (type [exp])

This property is when the scorekeeper will be checked or updated. Defaults to after-

turn.

ScorekeeperWhenTypebefore-turn exp

This indicates that the scorekeeper will run at the start of each turn matching exp, or

after every turn if exp is not given.

ScorekeeperWhenTypeafter-turn exp

This indicates that the scorekeeper will run at the end of each turn matching exp, or

after every turn if exp is not given.

ScorekeeperWhenTypeafter-event exp

This indicates that the scorekeeper will run after every event matching exp, or after

every event if exp is not given.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 153

ScorekeeperWhenTypeafter-action exp

This indicates that the scorekeeper will run at the end of each action matching exp, or

after every action if exp is not given.

ScorekeeperPropertyapplies-to side-list

This property is the set of sides or side classes to which the scorekeeper applies. Score-

keepers apply only to sides that are in the game. Defaults to side*.

ScorekeeperPropertyknown-to side-list

This property is the list of sides that know about this scorekeeper, and can see the

value of the score for each side that it applies to. Defaults to side*.

ScorekeeperPropertytrigger form

This property is an expression that is true when it is time to start checking the score-

keeper's main test. Once a scorekeeper is triggered, it remains active. Defaults to

false.

ScorekeeperPropertytriggered t/f

This property is true if the scorekeeper is currently triggered. Defaults to true.

ScorekeeperPropertydo forms. . .

This property is a list of forms to execute in order each time the scorekeeper runs.

Defaults to ().

ScorekeeperPropertymessages forms. . .

This property is a list of messages to be sent [???]. Defaults to ().

ScorekeeperPropertyinitial value

This property is the value of the score upon game startup. If this value is -9999, the

scorekeeper does not maintain a numeric score. Defaults to -9999.

4.8.1 Bodies

The forms in the body (the do property) of the scorekeeper may be any of the forms listed here.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 154

ScorekeeperFormlast-side-wins

If supplied as the only symbol in the body, then the scorekeeper implements the usual

\last side left in the game wins" behavior.

ScorekeeperFormif test action

If the test evaluates to true or any nonzero number, then the action will be done.

ScorekeeperFormcond (test actions. . .) . . .

This is like Lisp's cond.

ScorekeeperFormstop [message]

This stops the game immediately, with a draw for all sides.

ScorekeeperFormwin [sides] [own-message] [other-message]

ScorekeeperFormlose [sides] [own-message] [other-message]

ScorekeeperFormend [message]

This scorekeeper action ends the game immediately.

ScorekeeperFormadd exp [side]

This adds the result of evaluating exp to the score of the given side. The value may be

a negative number.

4.8.2 Scorekeeper Functions

ScorekeeperFunctionand exps

ScorekeeperFunctionor exps

ScorekeeperFunctionnot exp

ScorekeeperFunction= exp1 exp2

ScorekeeperFunction/= exp1 exp2

ScorekeeperFunction> exp1 exp2

ScorekeeperFunction>= exp1 exp2

ScorekeeperFunction< exp1 exp2

ScorekeeperFunction<= exp1 exp2

ScorekeeperFunctionsum types properties [test]

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 155

4.8.3 Score�le

GlobalVariablescorefile-name str

4.9 The History

All the important events in a game are logged into a history.

Formevt [date] type [sides] data

This form creates a single historical event. If date is omitted, then the date will be the

same turn as for the last event read.

Formexu

EventTypelog-started

This event records when the recording of events began. Multiple instances of this may

occur, for instance if logging were to be turned o� and then on again.

EventTypelog-ended

EventTypegame-started

This event records the actual start of the game. There should only be one in a game's

history.

EventTypegame-saved

EventTypegame-restarted

EventTypegame-ended

EventTypeside-joined

This event records when a side joined the game.

EventTypeside-lost

This event records when a side lost.

EventTypeside-withdrew

This event records when a side withdrew from the game.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 156

EventTypeside-won

This event records when a side won.

EventTypeunit-started-with

[???]

EventTypeunit-created id

This event records the creation of a unit.

EventTypeunit-completed

This event records the completion of a unit.

EventTypeunit-acquired

This event records the acquisition of a unit, for instance as a gift from another side.

EventTypeunit-captured

This event records the capture of a unit, as an outcome of combat or from a direct

attempt to capture.

EventTypeunit-moved id x1 y1 x2 y2

This event records the movement of a unit.

EventTypeunit-name-changed

EventTypeunit-type-changed

EventTypeunit-assaulted

EventTypeunit-damaged

EventTypeunit-killed

EventTypeunit-vanished

EventTypeunit-wrecked

EventTypeunit-garrisoned

EventTypeunit-disbanded

EventTypeunit-starved

EventTypeunit-left-world

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 157

The following event types are the results of actions.

EventTypeaction-ok

EventTypeaction-error

EventTypecannot-do

EventTypeinsufficient-acp

EventTypeinsufficient-material

EventTypeaction-done

EventTypeinsufficient-mp

EventTypecannot-leave-world

EventTypedestination-too-far

EventTypedestination-full

EventTypeoverrun-failed

EventTypeoverrun-failed

EventTypefire-into-outside-world

EventTypefire-into-too-far

EventTypefire-at-too-far

EventTypefire-into-too-near

EventTypefire-at-too-near

EventTypetoo-far

EventTypetoo-near

4.10 Battle States

Battles always have exactly two \sides", referred to as the attacker-list or A-list and the defender-

list or D-list, so as not to confuse them with sides in the game.

Formbattle a-list d-list. . .

Each list has the form

((<unit> <commitment>) ...)

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 158

4.11 Types in General

Types are the foundation of Xconq game designs. Nearly all the rules and game parameters are

associated with the unit, material, and terrain types. There is no sort of type hierarchy; instead,

most forms allow sets of types to be used in the place of single types.

Each type has an index associated with it, starting from 0. This index never appears directly,

and cannot be set. This does mean that types have an order, so the order in which types are

de�ned is sometimes signi�cant. These cases will be noted. The order is always the order in which

the types appear in the �le, so it is always the same.

4.11.1 Naming

The names of types need not be distinct from each other, but you run the risk of player confusion

if they share names.

TypePropertyname string

This property is the speci�c name of the type. This name will be displayed to players;

the exact format is up to the interface, but will typically depend on the name's length

and the space available in the display. If no type names have been de�ned, the internal

type name (see below) will be used. Defaults to "".

TypePropertylong-name string

This property is a fully spelled-out name for the type. Defaults to "".

TypePropertyshort-name string

This property is an abbreviated name of r Defaults to "".

TypePropertygeneric-name string

This property is like name, but identi�es the type less speci�cally, and several types

may have the same generic name. If no generic names are de�ned, then the regular

type names will be used. This is useful when making abbreviated lists, so that related

types get counted together. Defaults to ().

As an example of the distinction between type names and generic type name, the names of a

automobile type might be "1965 Mustang", "Mustang", and "M", while the generic name is "auto".

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 159

Then the interface could choose to display a parking lot as containing either "4 auto" or "2 Mustang

1 Edsel 1 Jeep".

Note that names speci�ed as properties are strings only, and are not de�ned as evaluable symbols.

4.11.2 Imaging

The interpretation of these properties is entirely up to each interface; see the appropriate inter-

face documentation for details.

TypePropertyimage-name str

This property is the name of the type's image. If unde�ned or unusable for some reason,

the interface will display the type in some default manner, such as a solid-color square

or a string.

For example, in X11, the name might be the name of a �le in the usual bitmap format, as

produced by the bitmap program. The actual �le name is produced by appending ".b". (The

situation in X is actually more complicated than this.) See the interface documentation for details

on how the interface uses the image.

TypePropertycolor str

This property is the name of the preferred color for this type. Both normal color names

and the strings "bg" and "fg" (meaning \foreground color" and \background color")

may be used. If the image is in color, then this property has no e�ect. Defaults to

"fg".

TypePropertychar str

This property supplies a single character for this type (all characters after the �rst one

in str are ignored). Defaults to "".

4.11.3 Documentation

TypePropertydescription-format list. . .

This property de�nes the di�erent ways in which an instance or instances of this type

may be described textually. This information may be used in narrative descriptions

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 160

and by some interfaces. [describe syntax of the lists - are similar to name grammars]

If (), then the instance will be described in some default fashion, such as (for units)

"the <side> <ordinal> <type>". Defaults to ().

TypePropertyhelp string

This property is a brief (preferably one-line) description of the type. Defaults to "".

TypePropertynotes strings. . .

This property is detailed documentation about the type. The formatting of the strings

is up to the interface, but in general each string is a separate line, the string "" indicates

a line break, and two "" in a row indicates a paragraph break. Defaults to ().

4.11.4 Availability

It may be that a set of types is larger than strictly necessary for a particular game. You can

make any type unavailable, which means that irrespective of any other controls, that type cannot

come into play during a game. You can also make it available only for particular turns.

TypePropertyavailable n

If the value of this property is greater than 0, then this type is available in the game

on or after turn n. If the value is less than 0, then the type is available, but only until

turn -n. If the value is 0, then the type is never available. Defaults to 1, which means

that the type is always available.

If a type becomes unavailable and there are units of that type in play, then they will vanish

immediately.

4.11.5 Type Extension

It may occasionally be necessary to add new kinds of information to a type. For instance, new

synthesis methods may require special data, or an interface may be able to use extra hints to

improve its display. The extensions property can be used to store this kind of data.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 161

TypePropertyextensions properties. . .

This property is a catch-all for nonstandard type properties. Anything may appear

here, but it will only be interpreted as much as needed, and unrecognized extensions

will not be warned about (so if you misspell one, you won't �nd out).

4.12 Unit Types

Formunit-type symbol properties. . .

This form de�nes a new type of unit. The symbol is required and must be previously

unde�ned. The bindings in properties are then added to the type one by one. If no

other name properties are de�ned, the symbol may be displayed to players (see above).

You can de�ne no more than 126 types of units.

The symbol here becomes the unit type's \internal type name" which is guaranteed unique. To

make synonyms for the internal type name, use define.

GlobalVariableu*

This variable evaluates to a list of all unit types, listed in the order that they were

de�ned. This list always re
ects the list of types at the moment it is evaluated.

GlobalVariablenon-unit

This variable [constant?] evaluates to a value that is NOT a unit type. This is needed

in several places to enable/disable features. Use of this in any other way is an error,

and may or may not be detected before it causes a crash.

4.12.1 Unit Naming

UnitTypePropertynamer namer-id

This property is the namer that will be used to generate names for units, if the unit's

side does not have a namer, or the unit is independent and not in any country. Defaults

to 0, which leaves the unit unnamed.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 162

UnitTypePropertyassign-number t/f

This property is true if the unit should have a serial number assigned to it by the side it

belongs to. Serial numbers are maintained for each type on each side separately, start

at 1 for the �rst unit of the type, and increase by one each time. Defaults to true.

4.12.2 Class-Restricted Unit Types

Sometimes the designer will want to make di�erent sides have di�erent types of units. Although

this can be done by setting up scenarios appropriately, that won't close all the loopholes that might

allow a side to get units that should only ever belong to another side.

The �rst step is to de�ne a class for each side. For instance, a side named "Rome" might

have a class "Roman", while the sides named "Aedui" and "Parisii" could both be in the class

"barbarian".

UnitTypePropertypossible-sides exp

This property restricts the unit type to only be usable by a side meeting the conditions

of exp. If exp is a string, it restricts the unit type to only be usable by a side whose

class includes a matching string. This can also be a boolean combination. Independent

units belong to a side whose class is "independent". The default of "" allows the unit

to belong to any side.

4.12.3 Self-Units

The self-unit can be any type, including one that cannot act; for instance, a capital city could

be the self-unit, thus making its defense all-important for a player.

GlobalVariableself-required t/f

This variable is true if each side is required to have a self-unit at all times. However, if no

unit of a suitable type is available when the game begins, then none will be required.

Defaults to false. [this should also have a related side property?] [rounding-down

advantage should not eliminate one needed as self-unit?]

UnitTypePropertycan-be-self t/f

This property says that the type of unit can represent the side directly. Defaults to

false.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 163

UnitTypePropertyself-changeable t/f

This property is true if the player can choose to change a self-unit of this type at any

time. Otherwise the self-unit can be changed only if the current one dies. Defaults to

false.

UnitTypePropertyself-resurrects t/f

This property is true if when the self-unit dies, another unit of an allowable type

becomes the self-unit automatically. Defaults to false.

Observe that these parameters can be used to develop various forms of backup, so that a player

can start out as a capital city, resurrect as a town, change self to one of several towns, then lose

when all the towns are lost.

UnitTypePropertydirect-control t/f

This property is true if a unit of this type can be controlled by its side automatically.

If false, then it must be within range of a unit that can control it, and is itself under

control by the side. Defaults to true.

Tablecontrol-chance-at u1 u2 -> n%

Tablecontrol-chance-adjacent u1 u2 -> n%

Tablecontrol-chance u1 u2 -> n%

Tablecontrol-range u1 u2 -> dist

This table gives the maximum distance from self-unit u1 at which units of type u2 can

be controlled directly. Units further away always act on their own (as if the doctrine

said so[?]). If this value is < 0, then u1 can never directly control any other u2 on the

side. Defaults to infinity.

4.12.4 Limiting Unit Quantities

The e�ect of these is to prevent any extra units from being created or from going over to a

side, regardless of the reason. This happens by either preventing player actions that would result

in exceeding a limit (such as when building units), or by making the unit vanish instantly (such as

when capturing a unit).

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 164

GlobalVariableunits-in-game-max n

This variable is the maximum number of all types of units, on all sides, including

independents, that may exist at any time, including initially. Defaults to -1, which

means that there is no limit.

GlobalVariableunits-per-side-max n

This variable is the maximum number of units (of all types together) that any side may

have, at any time. Events that would cause the limit to be exceeded, such as capturing

a unit, result in either the unit vanishing or becoming independent. Defaults to -1,

which means that there is no limit.

There is no limit on the number of units that may be independent.

UnitTypePropertytype-in-game-max n

This property is the maximum total of the given type, for all sides together. Defaults

to -1, which means that there is no limit.

UnitTypePropertytype-per-side-max n

This property is the maximum number of units of the given type allowed to each side.

Defaults to -1, which means that there is no limit.

4.12.5 Hit Points

A unit's hit points determine how healthy it is. If a unit's hp goes below 1, it is either wrecked,

meaning that it changes to a new type wrecked-type or else it vanishes, meaning that it is com-

pletely cleared from the world.

UnitTypePropertyhp-max n

This property is the maximum number of hit points for (each part of) a unit. Completed

units start with this many hit points. Defaults to 1.

UnitTypePropertyparts-max n

This property declares that a unit is to be treated as an aggregate of n smaller identical

units. Defaults to 1.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 165

UnitTypePropertywrecked-type unit-type

This property is the type of unit that a unit with 0 hp will become. For instance, a

destroyed \fort" might become a \rubble pile" unit. If its value is non-unit, then the

destroyed unit just vanishes. The wrecked-type of a type must be a di�erent type.

Defaults to non-unit.

The transformation to the wrecked type does not change position or name. The transformed

unit has full hp, supplies are conserved as much as possible, tooling is preserved, and any unit plan

is erased. It has the same number of parts, or as many as possible if that is fewer. It may be that

the wrecked type is on terrain that it cannot survive on; in that case, it will be wrecked again,

repeating until the unit either vanishes or is in a viable position, or this process has been repeated

more times than the number of unit types (prevents in�nite loops). Any excess occupants will be

removed and either placed in another nearby unit or in the open, or will vanish if there is no other

option.

UnitTypePropertyhp-recovery n

This property is the number of 1/100 hp recovered per turn. Recovery happens auto-

matically, as opposed to repair, which requires explicit action. The amount n / 100 is

recovered automatically each turn, while n mod 100 is the percent chance of recovering

1 hit point in addition. Defaults to 0.

4.12.6 Experience

UnitTypePropertycxp-max cxp

This property is the maximum combat experience this type of unit can have. Defaults

to 0.

4.12.7 Tech Levels

Before it can do anything with a type of unit, the side must have the appropriate tech level for

that type, which is just a number ranging from 0 up to tech-level-max. Each type has a distinct

tech level.

Tech levels always increase (since they represent abstract knowledge rather than physical plant).

Tech can be transferred freely to any other side via the message tech [xref to messages].

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 166

For each unit type, the following parameters de�ne the minimum tech levels at which sides can

do various things.

UnitTypePropertytech-to-see tl

This property is the minimum tech level that a side must have before it can see a unit

of this type. Defaults to 0.

UnitTypePropertytech-to-own tl

This property is the minimum tech level that a side must have in order to have a unit

of this type. Defaults to 0.

UnitTypePropertytech-from-ownership tl

This property is the tech level that may be reached by acquiring a unit of this type.

Since this is expressed as a minimum, multiple acquisitions have no additional e�ect.

Defaults to 0.

UnitTypePropertytech-to-use tl

This property is the minimum tech level that a side must have in order to give actions

to this type of unit. Defaults to 0.

UnitTypePropertytech-to-build tl

This property is the minimum tech level that a side must have in order to build this

type of unit. Defaults to 0.

UnitTypePropertytech-max tl

This property is the absolute maximum tech level possible for this type. Defaults to 0.

Tabletech-crossover u1 u2 -> n%

This table is the minimum tech level for u2 that is guaranteed by a particular tech

level for u1, expressed as a percentage of the tech-max for the types. For instance, if

tech-crossover is 80, and the tech level for u1 is 10 out of a max of 20, and the max

for u2 is also 20, then the side has a tech for u2 at least 8. Defaults to 0.

It is possible to gain some tech level just by being in the same game with a side that is more

advanced.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 167

UnitTypePropertytech-leakage .01tl

This property is the amount of tech level gain per turn that can happen to any side's

tech level that is less than the max of all sides in the game. This only happens if at

least one unit on the side has nonzero coverage of a unit on a more advanced side.

Defaults to 0.

4.12.8 Opinions

UnitTypePropertyhas-opinions t/f

This property is true if the unit has opinions about sides, both other sides and its own.

Defaults to false.

4.12.9 Point Value

Point values provide an abstract way to characterize the overall importance of a unit type. Point

values �gure into some scorekeepers, and are used by AIs.

UnitTypePropertypoint-value n

This property is the \value" of a unit. Defaults to 1.

4.13 Terrain Types

Terrain types are associated with the cells, borders, connections, and coatings in a world.

Formterrain-type name properties. . .

This form de�nes a new type of terrain, named by name. Details are similar to those

for unit types.

GlobalVariablet*

This variable evaluates to a list of all terrain types, listed in the order that they were

de�ned.

GlobalVariablenon-terrain

This variable has a value that is guaranteed not to be a terrain type.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 168

4.13.1 Terrain Subtypes

Terrain can appear in four di�erent roles: as the interior of a cell, as a border between cells, as

a connection between cells, or as a coating overlaying the normal terrain. The terrain subtype says

which role a type can play.

TerrainTypePropertysubtype subtype

This property is the role that the terrain type can appear in. Defaults to cell.

GlobalConstantcell

This constant indicates that terrain can �ll a cell. All units in the open and with an

altitude of 0 are assumed to be surrounded by the cell terrain.

GlobalConstantborder

This constant indicates that the terrain can be a border.

GlobalConstantconnection

This constant indicates that the terrain can be a connection.

GlobalConstantcoating

This constant indicates that the terrain can be a coating. A coating is a temporary

terrain modi�cation. The classic example is snow, which e�ectively changes some kinds

of terrain, but not completely and usually not permanently. Cells can have varying

heaviness of each type of coating.

Tablecoating-depth-min t1 t2 -> n

In order for a coating t1 to \stick", this table says much must be added all at once to

terrain t2. A coating depth that drops below this will disappear immediately. Defaults

to 0.

Tablecoating-depth-max t1 t2 -> n

This table is the upper limit on coating depth. Defaults to 0.

Terrain types may have additional subtype attributes that are used only during synthesis, to

select appropriate subtypes for special purposes.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 169

TerrainTypePropertysubtype-x n

This property is extra subtype information, used in synthesis. Defaults to no-x.

GlobalConstantno-x

GlobalConstantriver-x

This constant indicates that synthesis methods should treat this type as a river. The

terrain type may be either a border or a connection.

GlobalConstantvalley-x

This constant indicates that synthesis methods should treat this type as a valley.

GlobalConstantroad-x

This constant indicates that synthesis methods should treat this type as a road.

TerrainTypePropertyliquid t/f

This property is true if the terrain type represents a liquid, which means that adjacent

cells of liquid must have the same elevation. Defaults to false.

4.13.2 Terrain Compatibility

Terrain types are not always mutually compatible. Incompatible types may not be juxtaposed,

either at game setup time or by unit action during a game.

Tableadjacent-terrain-effect t1 t2 -> t3

This table speci�es what will happen to a cell of type t1 adjacent to a cell of type t2.

If t3 is non-terrain, nothing will happen, otherwise it will become a cell of type t3.

If t1 is a border type adjacent to a cell of type t2. If t3 is non-terrain, nothing

will happen. Otherwise, the border of type t1 will be removed, and if t3 is a border

type, a border of that type will be added. The e�ect on connection types is analogous.

Defaults to non-terrain.

4.13.3 Other Terrain Properties

TerrainTypePropertyelevation-min dist

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 170

TerrainTypePropertyelevation-max dist

These properties de�ne the minimum and maximum possible values for the elevation

in a cell of given terrain type. Both default to 0.

TerrainTypePropertytemperature-min n

TerrainTypePropertytemperature-max n

These properties de�ne the minimum and maximum possible values for the temperature

in a cell of given terrain type. Both default to 0.

TerrainTypePropertywind-force-min n

TerrainTypePropertywind-force-max n

These properties de�ne limits on wind force. Both default to 0.

TerrainTypePropertyclouds-min n

TerrainTypePropertyclouds-max n

These properties de�ne limits on cloud density. Both default to 0.

4.14 Material Types

Materials are materials that are manipulated in mass quantities. In general, material types just

index vectors of values attached to other objects, such as unit supplies.

No more than 126 types of material may be de�ned.

Formmaterial-type symbol properties. . .

This form de�nes a new type of material, named by symbol. Details are similar to

those for unit types.

GlobalVariablem*

This variable evaluates to a list of all material types, listed in the same order as they

were de�ned.

GlobalVariablenon-material

This variable has a value that is never a material type.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 171

4.14.1 People

A material type can be designated as representing people.

MaterialTypePropertypeople n

This property is the actual number of individuals represented by 1 of a material. If 0,

then the material type does not have people associated with it at all. Defaults to 0.

Multiple types of materials can represent di�erent types of people, so for example there could be

one type nomad with 10 people/material, and another type urbanite with 10,000 people/material.

The basic cell capacities for materials also constrain people materials. There can be an additional

limit on the number of individuals.

TerrainTypePropertypeople-max n

This property is the maximum number of individuals allowed in a cell of this type of

terrain. This is checked at the end of each turn; any excess will be moved into adjacent

cells or disappear entirely. Defaults to -1, which allows any number of people in a cell.

4.15 Static Relationships Between Types

In general, static relationships are those that must always hold during a turn. Xconq will

usually only test these when necessary, but this is up to the implementation. From the players'

and designers' point of view, these relationships can never be violated, even temporarily.

4.15.1 Occupants and Transports

A unit inside another unit is an \occupant" in a \transport", even if the \transport" can never

move. There are two kinds of capacity. Generic capacity is shared by all di�erent types, while

guaranteed capacity is for a particular type only.

UnitTypePropertycapacity n

This property is the limit on the sum of sizes of units that may occupy this type of

unit, not counting the exclusive capacities. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 172

Tableunit-size-as-occupant u1 u2 -> n

This table is the \size" of a (full-sized) unit u1 when it is in a transport u2. Defaults

to 1.

Tableunit-capacity-x u1 u2 -> n

This table is the number of units of type u2 that are guaranteed a place in a unit of

type u1. Defaults to 0.

Tableoccupant-max u1 u2 -> n

This table is the upper limit on the number of occupants of this type (not counting

unit-capacity-x). Defaults to 0.

UnitTypePropertyoccupant-total-max n

This property is the upper limit on occupants of all types together. Defaults to -1,

which allows unlimited occupancy.

A unit that is an occupant may not always have the same capabilities as when it is out in the

open. Its vision, combat, construction, and capacity may be a�ected.

Tableoccupant-vision u1 u2 -> t/f

Defaults to true.

Tableoccupant-combat u1 u2 -> n%

This table de�nes the e�ect on the combat abilities of a unit of type u1 when an

occupant in a unit of type u2. If 0, then the occupant cannot attack or �re. Defaults

to 100.

Tableoccupant-can-construct u1 u2 -> t/f

This table is true if u1 can create or complete units while an occupant of u2. Defaults

to false.

Tableoccupant-can-have-occupants u1 u2 -> t/f

This table is true if u1 can have occupants of its own while an occupant of u2. Defaults

to false.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 173

4.15.2 Units and Terrain

This section describes relationships between units and terrain. Units can be set to disappear

or be wrecked on particular types of terrain. If the terrain can be occupied safely, there may be a

limit on the numbers of units that can be in the same cell.

Tablevanishes-on u t -> t/f

This table is true if a unit u will disappear instantly if it somehow ends up on terrain

of type t. Defaults to false.

Tablewrecks-on u t -> t/f

This table is true if a unit u will wreck instantly if it somehow ends up on terrain of

type t. Defaults to false.

TerrainTypePropertycapacity n

This property is the limit on the sum of unit sizes that may share this cell. Defaults

to 1.

Tableunit-size-in-terrain u t -> n

This table is the \size" of a (full-sized) unit u when it is in/on the terrain t. Defaults

to 1.

Tableterrain-capacity-x u t -> n

This table is the number of (full-sized) units of type u that are guaranteed to have a

place in the cell. Defaults to 0.

Note that the units' sides are irrelevant; the sizes of units of all sides are added together. Limits

are calculated separately for the connection and open terrain in a cell.

UnitTypePropertystack-order n

This property is the relative position of this type of unit within a stack of di�erent

units. Larger values put units higher in the stack. The exact values are unimportant,

they are just used as sort keys. The use of this value is to ensure that particular types

are \seen �rst" when looking at a cell, so for instance if a truck and a city are stacked on

the same cell, everybody will see the city and not the truck. The owner of these units

can still see them. If the stack-order of two units is the same, then the higher-numbered

type will be higher in the stack. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 174

There is a possible bizarrity with stacking limits and units that can't see each other when in

the same hex, namely that a player could be prevented from moving a unit into a cell that looks

like it has enough room.

4.15.3 Units and Materials

Units can carry materials. As with occupants, there is both a generic storage space and spaces

specialized for each material type.

Tableunit-storage-x u m -> n

This table is the space reserved speci�cally for each type of material. Defaults to 0.

Materials that represent people may surrender to a unit in their cell.

Tablepeople-surrender-chance u t -> n%

This table is the base chance that people in terrain of type t will change sides if a unit

of type u is in their cell. Defaults to 0.

Tablepeople-surrender-effect u m -> n

This is a multiplier that takes the people type into account. Defaults to 100.

4.15.4 Terrain and Materials

Tableterrain-storage-x t m -> n

This table is the amount of a material m that can be accumulated in a cell with terrain

t. Defaults to 0.

4.16 Vision

GlobalVariablesee-all t/f

This variable is true if everything in the world, units, terrain, etc, is always visible

at all times, including initially. It takes precedence over all other visibility and spying

parameters. Defaults to false.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 175

GlobalVariablesee-terrain-always t/f

If this variable is true, then any side that has seen the terrain of a cell will be informed

if that terrain ever changes. Defaults to true.

UnitTypePropertysee-always t/f

This property is true when a unit is always visible after it has been seen once, so that

side changes, movements, etc will be seen forever afterwards. If the unit moves into

terrain that has not been seen, then that terrain also becomes seen as well. Defaults

to false.

UnitTypePropertysee-occupants t/f

This property is true when a unit's occupants are also seen whenever the unit itself is

under observation. Defaults to false.

UnitTypePropertyspot-action t/f

If this property is true, then the unit's chance to be seen by other sides will be tested

each time the unit acts in any way. This property is in addition to the check at the

beginning of each turn. Defaults to true.

The people in a cell e�ectively view (for their side) all units in that cell. Some units can hide

from the people.

Tablepeople-see-chance u m -> n%

This table is the chance that the people of the given type m will see a unit of type u.

This will be evaluated for each people type individually, once at the beginning of each

turn, and once for each populated cell that the unit enters during the turn. Defaults

to 100.

UnitTypePropertyvision-range dist

This property is the maximum range of vision coverage by the unit. A value of -1

disables all vision, 0 means only units in the same cell may be seen, and 1 means units

in adjacent cells may be seen. Defaults to 1.

Tablesee-chance-at u1 u2 -> n%

Tablesee-chance-adjacent u1 u2 -> n%

Tablesee-chance u1 u2 -> n%

All default to 100.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 176

Tablevisibility u t -> n

Defaults to 100.

Tablevision-night-effect u t -> n

This table is the multiplier for unit u's vision at night in each type of terrain t. E�ect

is to multiply with both vision range and see-chance. Defaults to 100.

4.16.1 Weather Vision

GlobalVariablesee-weather-always t/f

If true, then weather changes (in cells that have been seen) will always be reported.

Defaults to true.

4.16.2 Line of Sight

UnitTypePropertyvision-bend n

This property is the amount by which a unit can see \around corners". 0 means that

vision is strictly line-of-sight, while 100 means that elevations never obstruct vision.

Defaults to 100.

Tableeye-height u t -> dist

This propety is the additional elevation above the unit's position that a unit can see

with, when in the given terrain. Defaults to 0.

TerrainTypePropertythickness dist

This property is the thickness of the terrain, which is the di�erence between the

\ground" of the terrain and its top. Defaults to 0.

4.16.3 Spying

A unit type can also be speci�ed to do spying automatically. The outcome of spying is calculated

once/unit/turn, at the beginning of the turn (after move calculation but before any players can do

anything). Spying can happen to any unit not on the spying unit's side.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 177

UnitTypePropertyspy-chance .01n%

This property is the chance that the unit's spies will �nd out something. Defaults to

0.

UnitTypePropertyspy-range dist

This property is the maximum distance at which the unit's spies will �nd out something.

Defaults to 0.

Tablespy-quality u1 u2 -> n%

This table gives the chance that u1 's spies will return information about a unit of type

u2. Defaults to 100.

4.17 Game Initialization and Naming

Game initialization always starts by resetting all the game-de�ning data structures to an empty

state. This means no types, no world, etc. Then Xconq reads and interprets all of the game

modules that have been requested. These modules may overwrite each other arbitrarily. Then

any command line or startup options are processed (this may involve an interactive dialog), and

the random number generator is initialized. and players are matched with sides (any sides needed

for players will be created and named at this time). Xconq then executes a number of synthesis

methods to do various kinds of setup.

(Some interfaces might allow for con�rmation of the setup before launching into the game proper,

but this cannot be assumed.)

Since the details of good game synthesis can be complicated, synthesis methods are simply

wired-in pieces of code. Each method is self-contained; it assumes the game state to be valid, it

will determine its own applicability and produce a valid result. It will also acquire any data that

it needs, so does not require any special setup; however, a method may fail to run if it cannot �nd

that data. For instance, the usual fractal terrain generator needs percentiles for each terrain type,

and will not function without them. It may be that all the requested synthesis methods fail; this

is OK if Xconq's data is present and consistent, but otherwise Xconq will shut itself down, since

it has no remaining alternatives (think of this as a serious programming error and �x the game

design).

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 178

4.18 The Synthesis Method List

The synthesis method list speci�es which methods will be run, and in what order. After they

have all been run, Xconq runs a consistency and completeness check. For instance, there should be

a world with terrain everywhere. Failure at this point is fatal; Xconq will either exit or return to

a game setup dialog.

GlobalVariablesynthesis-methods method-list

This variable is a list of synthesis methods. If the list is empty, no synthesis methods

will be run.

The list of synthesis methods is ordered, and many contain duplicates, so that a method can be

run multiple times during setup. Note that most of the existing methods will simply return if they

detect that their work has already been done, so multiple runs will have no e�ect.

The default synthesis method list is

(make-fractal-percentile-terrain

make-countries

make-independent-units

make-roads

make-rivers

init-supplies

name-geographical-features

)

The synthesis method list may also contain items of the form

("program" forms...)

For each of these items, Xconq will attempt to �nd and run an external program named

"program", giving it as input the result of evaluating the forms, and then reading the output

of the program, which must be a valid game module. The program must be capable of interpreting

two arguments; the �rst is the name of the input �le it is to read from, and the second is the name

of the output �le it must write to. If successful, it should return with a result code of 0; otherwise,

Xconq will issue a warning to players.

Any further details will depend on your system, since each will use di�erent conventions. Note

that this is NOT a portable construct; you cannot assume that everybody will have built and

installed the program you're using.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 179

4.18.1 Fractal World

The fractal world synthesizer can make a variety of natural-looking terrain. It relies on a number

of parameters to govern a single algorithm.

SynthesisMethodmake-fractal-percentile-terrain

This method generates the terrain layer of a world. It works by generating two distinct

layers of random blobs, known as the \alt" and \wet" layers, then decides on a terrain

type for each cell. If elevations are de�ned, then this method will use the \alt" layer

to produce elevations.

GlobalVariablealt-blob-density n

GlobalVariablewet-blob-density n

These variables are the number of blobs to put down, expressed as number per 10,000

cells. Defaults to 500.

GlobalVariablealt-blob-size n.f%

GlobalVariablewet-blob-size n.f%

These variables are the average number of cells in a blob, expressed as number per

10,000 cells. Defaults to 100.

GlobalVariablealt-blob-height n

GlobalVariablewet-blob-height n

These variables are the amounts by which to increment or decrement within a blob.

Defaults to 1000.

GlobalVariablealt-smoothing n

GlobalVariablewet-smoothing n

These variables specify the number of averaging steps to perform after the blobs have

been generated. Defaults to 2.

TerrainTypePropertyalt-percentile-min n%

TerrainTypePropertyalt-percentile-max n%

TerrainTypePropertywet-percentile-min n%

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 180

TerrainTypePropertywet-percentile-max n%

These properties are the percentiles of elevations and moistures that result in the given

terrain type. Percentile ranges may overlap, in which case the earlier-de�ned terrain

type will be used. If a cell has a alt and wet that does not fall in any of the ranges,

then terrain type 0 will be used there and players will be warned. Mins defaults to 0,

maxes to 100.

4.18.2 Maze World

A maze consists of a set of randomly placed \rooms" connected by random passages.

SynthesisMethodmake-maze-terrain

This method creates terrain that looks like a maze. It starts by randomly assigning

terrain according to its occurrence, similarly to make-random-terrain below, then

carves out rooms and passages, �lling each of those with terrain types according to

their respective occurrences.

TerrainTypePropertymaze-room-occurrence n

This property is the weighted amount of this terrain type in rooms in the maze. Defaults

to 0.

TerrainTypePropertymaze-passage-occurrence n

This property is the weighted amount of this terrain type in passageways in the maze.

Defaults to 0.

GlobalVariablemaze-room-density n

This variable is the fraction of the maze that is room, expressed as the number of cells

per 10,000 cells in the area. Defaults to 1000.

GlobalVariablemaze-passage-density n

This variable is the fraction of the area that is passageway, expressed as the number of

cells per 10,000 cells in the area. Defaults to 3000.

4.18.3 RandomWorld

The random world generator just assigns terrain and elevations randomly.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 181

SynthesisMethodmake-random-terrain

This method generates completely random terrain. It uses a simple weighting to govern

how much of each terrain type appears, and makes random elevations as well.

TerrainTypePropertyoccurrence n

This property is the percentage of the world that will be of this type. Defaults to 1.

4.18.4 Earthlike World

Earthlike generation uses algorithms that more closely approximate realistic terrain.

SynthesisMethodmake-earthlike-terrain

This method generates terrain that approximates what actually appears on Earth.

4.18.5 River Generation

Rivers are borders or connections consisting of \watery terrain" that run downhill to regions of

water.

SynthesisMethodmake-rivers

This method looks for a border or connection terrain type with a subtype-x of river-

x. then uses the world's elevation data to run rivers downhill (always choosing the

lowest of possible adjacent locations) until they reach cell terrain with a subtype > 0.

This method will not run if there are no appropriate terrain types, nor if there is no

elevation data.

TerrainTypePropertyriver-chance n%

This property is the chance that a river will start in or around a cell of this terrain

type. Defaults to 0.

GlobalVariableriver-sink-terrain t

If the value of this variable is a terrain type, then a cell completely surrounded by river

will be changed to be this type. Defaults to non-terrain.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 182

Note that the algorithm computes rivers in a deterministic way, so high values of river-chance

do not result in tangled rivers.

4.18.6 Road Generation

The road generation method makes networks of connection terrain between particular unit types,

usually those resembling cities.

SynthesisMethodmake-roads

This methods synthesizes roads for an area. For any connection type of terrain, if no

layer has been created for it already, and the type has a subtype-x of 3, put down roads

between any pair of units whose road-chance is nonzero. The method will attempt

to share road routes whenever possible, and choose terrain according to road-into-

chance.

Tableroad-chance u1 u2 -> n%

This table is the chance that a road will be laid, running from a unit of type u1 to one

of type u2. This is not a symmmetrical relationship. Defaults to 0.

Tableroad-into-chance t1 t2 -> n%

This table is the chance that a road will be chosen to pass from terrain of type t1 into

terrain of type t2. Defaults to 100.

4.18.7 Making Countries

The make-countriesmethod sets up the starting units for each side, placing them in a con�ned

area, separated from the starting units of other sides and taking terrain preferences into account.

If requested, this method will also expand the country outwards by a speci�ed amount, possibly

placing additional units in the process.

SynthesisMethodmake-countries

This method works by looking for a likely place for the country, randomly places a

basic set of starting units within that area, then expands the country outwards. The

parameters give you control over the mix of terrain types in the country, as well as

the size and relative positions of the di�erent countries. This method runs on any side

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 183

with fewer units than it is supposed to start with, as given by the parameters below.

It places groups of units at locations separated from each other by speci�ed distances.

GlobalVariablecountry-radius-min dist

This variable is the radius of the country's initial area. Defaults to -1, which allows

the algorithm to calculate a \reasonable" country size appropriate to the given number

of units.

GlobalVariablecountry-separation-min dist

GlobalVariablecountry-separation-max dist

These variables are the minimum and maximum distances of country centers from each

other, in cells. If small, countries will mostly overlap; if very large, then attempts to

use small worlds will fail; if the max and min are too close to each other, placements

can also fail. For both of these, a value of -1 disables their e�ect. Both default to -1.

The max separation bound needs to be satis�ed for a country with respect to only one other

country, so for instance the �nal layout may involve a long \string" of countries where the �rst and

last countries are very far apart from each other. The minimum bound must be satis�ed for all

pairs of countries.

TerrainTypePropertycountry-terrain-min n

This property is the minimum amount of terrain that must be within the country's

initial radius. Defaults to 0.

TerrainTypePropertycountry-terrain-max n

This property is the most terrain of the given type that may appear. If -1, then any

amount may be present. Defaults to -1.

UnitTypePropertystart-with n

UnitTypePropertyindependent-near-start n

These properties set the number of units of the given type in a player's country. These

units are randomly scattered within the initial radius, and the favored table (see

below) decides which terrains will be used. Units may be placed inside each other; in

fact, units with no favored terrain will be made into occupants if possible.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 184

The independent units will be placed after the ones belonging to the side, so on the

average they will get the less desirable locations in the country. Both independent and

the side's units will be named using the side's namers.

Both default to 0.

Tablefavored-terrain u t -> n%

This table sets the probability of the unit type being on the given type of terrain at the

outset. A value of 0 is an absolute prohibition against placing the unit on that type of

terrain, thus every game must specify at least one non-zero value for some terrain type

and some initial unit type. Defaults to 100.

Once the initial country area has been set up, then you can allow the countries to expand

outwards. Expansion occurs at the same rate for all countries. Countries may expand into and

through each other.

TerrainTypePropertycountry-growth-chance n%

This property is the chance that a country will expand onto an unclaimed cell of the

given terrain type. Defaults to 100.

TerrainTypePropertycountry-takeover-chance n%

This property is the chance that a country will expand onto another country's cell of

the given terrain type. Defaults to 0.

UnitTypePropertyunit-growth-chance n.f%

This property is the chance that a unit of the given type will be placed when the

country expands onto a cell. The unit will only be placed if the favored chance is also

true. Defaults to 0.

UnitTypePropertyindependent-growth-chance n.f%

This property is the chance that an independent unit of the given type will be placed

when the country expands onto a cell. The favored chance is also evaluated. Defaults

to 0.

UnitTypePropertyunit-takeover-chance n.f%

This property is the chance that a unit of the given type in another country and

belonging to another side will be given to the growing side. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 185

UnitTypePropertyindependent-takeover-chance n.f%

This property is the chance that an independent unit of the given type in another

country will be given to the growing side. Defaults to 0.

GlobalVariablecountry-radius-max dist

This variable is a cap on the country growth process. Values between 0 and country-

radius-min prevent country growth entirely, while a value of -1 allows growth to

encompass the entire world. Defaults to 0.

UnitTypePropertycountry-units-max n

This property is a cap on the number of units given to the side's country. Defaults to

-1, which disables any limit.

GlobalVariablegrowth-stop-chance n%

This variable is the chance that a country's growth will stop, if during the current [ring

or round] no new cells were added to the country. Defaults to 0.

TerrainTypePropertycountry-people-chance n%

This property is the chance that the people's side will be changed to match that for

the country they are in. Defaults to 100.

4.18.8 Making Independent Units

SynthesisMethodmake-independent-units

This method scatters independent units randomly over the world. This method will

not run if the speci�ed density of independent units has already been achieved, for

instance from a prede�ned world or from country placement. Independent units that

should be inside other independents will be handled correctly.

Tableindependent-density u t -> n

This table is the total number of independent units appearing throughout the world, at

the rate of n per 10,000 cells of the given terrain type. Any independent units already

placed are counted �rst, so this value represents �nal density. If the sum of values for

a given unit type on all terrain types is nonzero, then at least one unit of that type

will be placed, even if the world is very small (i.e. the calculation of numbers rounds

up not down). Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 186

This method uses the favored-terrain table as the chance that a given unit will be placed at

a randomly-chosen position, and it will keep trying di�erent positions until a suitable one is found.

TerrainTypePropertyindependent-people-chance .01n%

This property is the chance that the people of a cell with this terrain type will be made

independent. Deafults to 0.

4.18.9 Initial Supply

By default, all units start out empty of materials. The supply initialization method gives each

unit a starting supply, according to the stockpile tables.

SynthesisMethodmake-initial-materials

This method �lls unit and cell supplies to speci�ed levels. It will �ll all units in existence

at the moment it runs, including reinforcements [and incomplete?] units. Similarly, all

cells will be �lled.

Tableunit-initial-supply u m -> n

This table is the amount of each material that each unit will start out with. If the

initial supply is greater than unit's capacity, then the unit will just be �lled to capacity.

Defaults to 0.

Tableterrain-initial-supply t m -> n

This table is the amount of material m that each cell with terrain t will start out with.

This will be limited by the cell's capacity. Defaults to 0.

4.18.10 Naming Geographical Features

Although named geographical features don't a�ect the outcome of a game in any way, they are

useful for \color" and for identifying locations more readably.

SynthesisMethodname-geographical-features

This method identi�es and names regions as geographical features, such as mountain

ranges and islands.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 187

GlobalVariablefeature-namers feature-namer-list

This variable is a list of feature types and their associated namers. This is used for

features not intersecting any country with a namer for the feature's type. Defaults to

().

GlobalVariablefeature-types feature-expr-list

This variable is a list of feature types that may be identi�ed. Examples: ("lake"

(group (sea shallows) 1)), ("peak" (high-point 1 1))

Defaults to ().

4.18.11 Naming Units

SynthesisMethodname-units-randomly

This method gives names to previously-unnamed units, using their usual [?] naming

methods.

4.18.12 Making a Random Date

SynthesisMethodmake-random-date

[how is this controlled?]

4.19 Setup Postprocessing

Some initialization steps will be done after all synthesis methods have been run. Xconq will

always do these.

4.19.1 Initial View

By default, each side starts out knowing only what its units can normally see at the beginning

of the �rst turn. These parameters add to that initial view.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 188

GlobalVariableterrain-seen t/f

This variable is true if all the terrain of the world is known initially. Defaults to false.

UnitTypePropertyinitial-seen-radius dist

This property speci�es the radius of the area seen around each of the starting units. It

computes visibility of terrain (cells and borders) only. Defaults to 1 (which is a no-op

if the unit's vision-range is greater than or equal to 1).

UnitTypePropertyalready-seen n%

This property is the chance to see units of this type at the beginning of the game.

This applies only to units belonging to another side, and on known terrain. The e�ect

is one-time, so if an already-seen unit changes sides later on, other players will not

see the change unless they have the unit under observation for themselves. Note that

see-always implies already-seen. Defaults to 0.

UnitTypePropertyalready-seen-independent n%

This property is like already-seen, but applies to independent units speci�cally. De-

faults to 0.

4.20 Naming and Text Generation

Xconq can generate names for sides, units, and geographical features.

4.20.1 Naming Sides

Side naming is special, because several di�erent but related names have to be produced.

Variableside-library side-info. . .

This variable is a weighted list of groups of side properties, each of which may be used

to �ll in a side.

The form of each side name entry is basically a subset of the side's properties:

([weight] ... (name "name") ... (color-scheme "colors") ...)

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 189

Each entry can include as many or as few of the attributes as desired; any missing will be �lled

in from the usual defaults. The optional weight is a number that adjusts the probability of selection

of the given side name set; it defaults to 1, and the probability is scaled according to the sum of the

weights for all the sides listed. If any property value is a namer, then the namer will be run. (Note

that if multiple namers are speci�ed, they cannot be guaranteed to coordinate with each other, so

you can end up with a side noun that is inappropriate for its corresponding side name.)

4.20.2 Namers

Since one of the purposes of naming is to identify objects uniquely, any name generator should

be able to maintain some memory as to what has been generated already. The objects that do this

are namers.

Formnamer [symbol/id] method rejects. . .

This form de�nes an instance of a namer, with either the symbolic name or numeric

id. If either matches the name or id of an existing namer, then the old namer will

be overwritten, otherwise a new one will be created. The method must be one of the

naming methods listed below, and rejects de�nes what names may not be produced

(its exact interpretation depends on the method).

4.20.3 Naming Methods

As with general synthesis, Xconq has a number of naming methods available.

An implementation is free to de�ne additional naming methods.

NamingMethodrandom names.... . .

This method picks a name from the given list of names and removes that name from

the list

NamingMethodjunky

This method produces a gobbledy-gook name, very techy-looking.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 190

NamingMethodgrammar root max-length rules. . .

This method de�nes a grammar, where root is the root symbol, max-length is a limit

on the length of the generated names (in characters), and rules is a list of rules of the

form

(symbol ([sym] [weight] symbol/string/list [n] . . .))

The generation process works by substituting one of the rule's alternatives for the symbol,

starting with the root symbol. The probability of an alternative being selected is arrived at by

adding up the optional weights weight (assuming missing weights to be 1), and choosing with a

probability of the weight divided by the total sum of weights. Thus the weights need not add up

to any particular value.

Strings get used directly. If a symbol in the rule's chosen expansion does not appear as the

lefthand side in any rule, then it will be handled as a string, otherwise it will be expanded in turn.

If the symbol matches a namer's name, then that namer will be run (passing the same object??)

and its result incorporated. A list should be a list of strings and symbols, and the expansion of

each will be concatenated.

GlobalConstantany

[???]

GlobalConstantor

GlobalConstantreject

A special rule headed by reject is a list of substrings that should not appear in a

generated name; this is a convenient way to �lter out particularly unlovely results.

GlobalConstantcapitalize

Directs capitalization of a nonterminal.

[text is not actually di�erent from a namer?]

Formtext [symbol/id] method rejects. . .

[elsewhere?]

GlobalVariableaction-messages patterns

GlobalVariableevent-messages patterns

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 191

4.21 Other Initialization Controls

GlobalVariableedge-terrain

This variable is the type of terrain to �ll in on all the edges of a world. The edges of

a world have little or no e�ect on the game, but the terrain type should be something

distinctive, so that players can recognize the edges easily. (For instance, ice is usually

a good choice for edges, but probably not on a map of Antarctica!)

4.22 Actions in General

The parameters in this chapter de�ne and regulate the various actions that are available to units

during a game.

Actions are always started and completed (including all of their e�ects) within the same turn,

and a unit can only do one of them at a time.

All actions are in theory available to all units, but the parameters can be set so as to deny any

action type to any unit type. See the descriptions with each action type.

All action is limited by action points. Each unit gets a certain number at the beginning of

each turn and expends them in the course of doing things. The usual expenditure is one point per

action, but may be more, as de�ned for each type of action. A unit action must always consume

at least one action point.

Units can accumulate acp from turn to turn, and they can also reduce acp below zero.

UnitTypePropertyacp-per-turn acp

This property is the basic allowance of action points that a unit gets each turn. Defaults

to 1.

UnitTypePropertyacp-min acp

This property speci�es how far into \action debt" a unit can go during a turn before

it is prevented entirely from acting. A unit with acp < 1 at the beginning of a turn

cannot do anything at all. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 192

UnitTypePropertyacp-max acp

This property is the maximum number of action points that a unit can save up. The

value -1 means that acp-max is equal to acp. Extra acp is silently lost. Defaults to -1.

UnitTypePropertyfree-acp acp

This property is the value is the amount by which the action points for some action

can exceed the unit's currently available acp and still allow that action. Defaults to

-1, which means enough free acp to allow any action.

Note that a unit with an acp of 0 is completely unintelligent, about like a cow patty. Cow

patties can be useful for blocking paths, hiding behind, and suchlike, and have the advantage that

once they're in place, you don't have to manage them. Other units will have to pick them up and

put them down, of course.

Tablematerial-to-act u m -> n

This table is a minimum amount of m needed for u to be able to act. The material is

not consumed. Defaults to 0.

UnitTypePropertyacp-damage-effect xxx

Tableacp-night-effect u t -> n

This table is the multiplier for unit's acp at night in each type of terrain. Defaults to

100.

Tableacp-occupant-effect u1 u2 -> n

Defaults to 100.

UnitTypePropertyacp-per-turn-min acp

UnitTypePropertyacp-per-turn-max acp

This property limits on e�ect of occupants, damage, etc. Defaults to 1.

4.22.1 Action Ordering

GlobalVariableuse-side-priority t/f

This variable is true if the sides may only act one at a time; otherwise, all sides and

units may move simultaneously during a turn. Defaults to false.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 193

UnitTypePropertyaction-priority n

This property is the order in which units of this type will act. Higher numbers act

earlier. If the di�erence between the priority of one type and another is greater than 100,

then the earlier-acting units must �nish acting before the later-acting units, otherwise

a player can rearrange the actual acting order as desired. Defaults to 0.

4.22.2 Movement

Movement is the most common sort of action. This section covers movement over open terrain;

the next section discusses interaction with transports.

The general theory of movement is that a unit not in a transport crosses its current cell terrain

to the edge of the cell, crosses any border terrain, and then moves into the destination cell, OR it

moves onto connection terrain, travels along connection terrain to the new cell, and maybe moves

o� the connection. If the unit starts in a transport, then the transport may ferry the unit over

some of the intervening terrain, possibly as far as the unit's destination.

A unit's basic movement rate is de�ned by its speed, which is a ratio of the the unit's acp. A

speed of 100% means that the unit can potentially enter as many cells as it has acp, while a speed

of 20% means that the unit uses at least 5 acp to enter a cell.

Movement can only succeed if several conditions are met: the unit must be able to cross the

border terrain, the destination must be inside the world (but see below), it must be able to exist

on the terrain of the destination.

ActionTypemove x y z

This is the action that a unit performs to go from one location to another. The

destination must be within the move-range of the unit.

UnitTypePropertyacp-to-move acp

This property is the number of acp a unit uses to do one move action. Defaults to 1.

UnitTypePropertyspeed n

This property is the basic multiplier relating acp to the number of cells that may be

entered during a turn. Defaults to 100.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 194

UnitTypePropertyspeed-damage-effect list. . .

Defaults to ().

Tablespeed-occupant-effect u1 u2 -> n%

This table is the percent change in the speed of type u1 for each occupant of type u2.

If the basic speed of u1 is 0, then the multiplication is performed as if the speed were

1 instead. Defaults to 100.

UnitTypePropertyspeed-wind-effect xxx

UnitTypePropertyspeed-wind-angle-effect xxx

UnitTypePropertyspeed-min mp

This property is the worst-case speed of a unit. Defaults to 0.

UnitTypePropertyspeed-max mp

This property is the upper bound on a unit's movement in one turn. Defaults to 0.

UnitTypePropertymove-range n

This property is the maximum distance allowed to the destination cell. Defaults to 1.

The product of a unit's acp and its speed is its available movement points. Any move between

cells will cost at least one movement point. Some mp costs may be negative, but the total mp for

a move will always be at least 1.

Tablemp-to-leave-terrain u t -> mp

This table is the mp cost to leave a cell of type t. If t is a border type, this cost is never

used. If t is a connection type, this cost is the cost of leaving the connection terrain

for the open terrain of the cell. If t is a coating type, then this value adds to the cost

of leaving the cell. Defaults to 0.

Tablemp-to-enter-terrain u t -> mp

This table is the mp cost to enter a cell of type t. If t is a border type, this cost is the

cost of crossing the border. If t is a connection type, this cost is the cost of entering

the connection terrain from the open terrain of the cell. If t is a coating type, then this

value adds to the cost of entering the cell. Defaults to 1.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 195

Tablemp-to-traverse u t -> mp

This table gives the cost to travel along a connection or border of the given type.

(note that the other costs are irrelevant if unit starts and ends its movement on the

connection).

A special type of move known as a border slide can occur when the endpoints of a

border touch on the start and destination cells. Sliding works like normal movement

that happens to end up on a nonadjacent cell. Same rules for permissibility apply. If

the value is negative, then border sliding is not possible.

Defaults to 1.

If both enter/traverse/leave and enter/leave movement is possible, then Xconq will automatically

choose the cheapest alternative.

Each unit type has a range of altitudes within which it normally operates.

Tablealtitude-min u t -> n

This table is the minimum altitude possible for each type of unit on each type of terrain.

Defaults to 0.

Tablealtitude-max u t -> n

This table is the maximum altitude possible for each type of unit on each type of

terrain. Defaults to 0.

UnitTypePropertymp-to-leave-world mp

This property is an additional move cost to leave the world entirely. To leave, the unit

must be within its move-range of an edge, and have su�cient mp to move into the

terrain in the edge cell designated as the destination of the move. If the value is -1,

then the unit may never leave. Defaults to -1.

UnitTypePropertyfree-mp mp

This property is the amount by which the move points can \go into the red" and still

allow one more move. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 196

ZOC is exerted only over units out in the open, has no e�ect on occupants, unless they leave

their transport. Occupants can themselves exert a ZOC, if occupant-can-fight is true. ZOC

applies to all units on a hostile side.

Tablezoc-range u1 u2 -> dist

This table is the maximum distance at which type u1 exerts a ZOC over type u2. A

value of 0 means that the unit controls only its own cell, and a value of -1 means that

the unit does not exert a ZOC at all. Defaults to 0.

Tablezoc-into-terrain u t -> t/f

This table is true if the unit exerts its ZOC into terrain t. Defaults to true.

Tablezoc-from-terrain-effect u t -> n

Defaults to 100.

Tablemp-to-enter-zoc u1 u2 -> mp

This table speci�es extra movement points needed to enter the ZOC. -1 prevents entry

entirely. Defaults to -1.

Tablemp-to-leave-zoc u1 u2 -> mp

This table speci�es extra movement points needed to leave the ZOC. -1 prevents de-

parture entirely. Defaults to 0.

Tablemp-to-traverse-zoc u1 u2 -> mp

This table speci�es extra movement points needed to move within the ZOC. -1 prevents

traversing entirely. Defaults to 0.

If multiple units exert a ZOC into the same cell, then the mp cost is the maximum of the

di�erent ZOC costs.

Units may use up some of their materials when they move. Consumption happens after the

move action, and only for successful moves.

Tablematerial-to-move u m -> n

This table is the amount of each material that a unit of type u must have in order to

be able to move. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 197

Tableconsumption-per-move u m -> n

This table is the amount of each material used by a unit to do one move action. The

amount taken is independent of terrain. If the unit has less than the required amount

of any of these materials, it is immobilized until it gets more (this is tested before each

move action; note that this does not a�ect any other action, including entering and

leaving transports). Defaults to 0.

4.22.3 Entering and Leaving Transports

Units can be inside other units, and have units inside them, in a tree-like fashion. There is no

limit on the depth of the tree, but most occupant-transport relationships have other limits.

ActionTypeenter unit

This is the action to enter the given unit.

UnitTypePropertyacp-to-enter-unit acp

This property is the number of acp a unit uses to do one entry action. Defaults to 1.

Tablecan-enter-independent u1 u2 -> t/f

This table is true if a unit u1 can enter an independent unit u2. Defaults to false.

Entering and leaving incur mp costs as does movment, but units with a speed of 0 may enter

and leave transports.

Tablemp-to-enter-unit u1 u2 -> n

This table is the extra movement points required for u1 to enter the transport u2, and

vice versa (i.e. how much of transport's time is consumed by the process). Defaults to

0.

Tablemp-to-leave-unit u1 u2 -> n

Similar to entry cost. Defaults to 0.

Note that these mp consumptions need not be symmetrical between occupant and transport, so

for instance a passenger can use 2 of its mp to get on a transport, while costing the transport only

one of its mp.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 198

Tableferry-on-entry u1 u2 -> ferry-type

Tableferry-on-departure u1 u2 -> ferry-type

This table speci�es how much intervening terrain the unit u2 entering or leaving trans-

port u1 will have to cross on its own (and thus incur the terrain's mp costs and

limitations). Defaults to over-border.

GlobalConstantover-nothing

This constant indicates no ferrying, occupant must pay all costs to go to destination

cell.

GlobalConstantover-own

This constant indicates that the transport ferries over terrain of its own cell.

GlobalConstantover-border

This constant indicates that the transport ferries over any border terrain also.

GlobalConstantover-all

This constant indicates that the transport ferries to destination cell, e�ectively putting

occupant on middle of cell, on connection terrain if necessary.

4.22.4 Research

Research is an action performed by a unit with the sole e�ect of increasing its side's tech level.

Research cannot be performed by independent units.

ActionTyperesearch u

This is the action of researching the unit type u. If the action is valid, then the tech

level of the side will increase. Unit types with any tech crossover will also have their

tech levels adjusted.

UnitTypePropertyacp-to-research acp

This property is the number of action points used up by one research action. Defaults

to 0, which disallows research.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 199

Tabletech-per-research u1 u2 -> .01n

This table is the gain in tech level resulting from a research action, expressed as 1/100

of a level. Gains of less than 100 are probabilistic [should describe this concept in

general, used by several parms] Defaults to 0.

UnitTypePropertytech-per-turn-max tl

This property is a ceiling on the total gain of tech level possible in one turn for each

side and this unit type. Defaults to 9999.

4.22.5 Tooling Up

There are several stages in the construction of a unit: tooling up, creation, and completion.

Tooling up is where the building unit prepares to build, creation is the step where the new unit

comes into existence, and completion is where the new unit is brought up to being operational.

For the player, this is mostly automatic; if tooling must be done �rst, a user command to build

will generate the appropriate actions.

Once the technology has been achieved, a unit that intends to construct other units may need

to tool up. This is expressed as tool points or tp. Tool points start at zero, can be increased by

tooling actions, and may gradually decline (representing wear and tear on the equipment).

ActionTypetoolup u

This is the action of tooling up to build a unit of type u. The result is an increase in

the tp for the acting unit.

UnitTypePropertyacp-to-toolup acp

This property gives the number of acp needed to do a toolup action. Defaults to 0,

which disallows tooling up.

Tabletp-per-toolup u1 u2 -> tp

This table is the number of tp gained by one tooling action. Defaults to 0.

Tabletp-to-build u1 u2 -> tp

This table is the number of toolup points needed before a unit of type u1 can create

or build a unit of type u2. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 200

Tabletp-max u1 u2 -> tp

This table is the maximum possible tooling. Defaults to 0.

Tabletp-attrition u1 u2 -> tp

This table is the number of .01 tool points automatically lost at the end of each turn.

Defaults to 0.

Tabletp-crossover u1 u2 -> n%

This table is the e�ective number of tool points for u2 that is guaranteed to exist,

expressed as a percentage of the tool points for u1. [copy tech-crossover description

here] Defaults to 0.

4.22.6 Creating a Unit

When a constructing unit is tooled up, the build action creates a unit immediately and puts it in

its designated location, whether inside the unit doing the building or somewhere nearby. This new

unit, however, is incomplete, representing the keel of the ship or the surveyor's lines for an airstrip.

Incomplete units are thus basically skeletons, with some unit characteristics, but unable to move

or act in any way. They also cannot have any occupants, unless the occupants are of a type that

can complete the unit. Those occupants do not derive any protection or other advantages from

occupying the incomplete unit, and they are not a�ected by the occupant-can-build limitation.

ActionTypecreate-in u unit

This action creates a new unit of type u occupying the given unit unit. The unit unit

must have room for the new unit.

ActionTypecreate-at u x y z

This action creates a new unit of type u in the open at x,y,z. The cell must have room

for this new unit.

Tableacp-to-create u1 u2 -> acp

This table is the acp used by a unit of type u1 to create a a unit of type u2. If zero,

then u1 cannot create a u2. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 201

Tablecreate-range u1 u2 -> dist

This table is the maximum distance at which a unit of type u1 can create a unit of

type u2. Defaults to 0.

Tablecp-on-creation u1 u2 -> cp

This table is the completeness of a unit of type u2 when created by a unit of type u1.

Defaults to 1.

Tablematerial-to-create u m -> n

This table is the total amount of a material type m needed to create a unit of type u.

Defaults to 0.

Tableconsumption-on-creation u m -> n

This table is the amount of a material type m consumed to create a unit of type u.

Defaults to 0.

Tablesupply-on-creation u m -> n

This table is the amount of supply of each material type m to give a newly created unit

of type u. This supply is newly generated, does not come from anywhere else. (Note

that players could cheat by creating units, taking their supply, and never completing

them.) Defaults to 0.

4.22.7 Building a Unit

Once an incomplete unit has been created, other units can help to complete it.

ActionTypebuild unit

This action adds to the completeness of unit. If the unit becomes complete, it will be

given its initial supply, acp, name, etc.

Tableacp-to-build u1 u2 -> acp

This table is the acp used up by one build action by a unit of type u1 when buiding a

unit of type u2. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 202

Tablecp-per-build u1 u2 -> cp

This table is the amount of completeness of a unit of type u2 added by each completion

action performed by a unit of type u1. If 0, then u1 cannot contribute to completing

u2. Defaults to 1.

Tablematerial-to-build u m -> n

This table is the amount of each material type m that u must have in order to build

anything at all. Defaults to 0.

Tableconsumption-per-build u m -> n

This table is the amount of each material type m consumed by u when doing a build

action. Defaults to 0.

Tablebuild-range u1 u2 -> dist

This table is the maximum distance allowed between a unit of type u1 and the incom-

plete unit of type u2 it is working on. Defaults to 0, which requires the two units to

be in the same cell.

At a given point, incomplete units can make progress towards completion on their own. This is

automatic because incomplete units are unable to act, and occurs at a constant speci�ed rate.

UnitTypePropertycp-to-self-build cp

This property is the minimum completeness of the unit necessary before it can work

on itself. Defaults to 0.

UnitTypePropertycp-per-self-build cp

This property is the completeness added each turn when a unit works on itself. Defaults

to 0.

Tablesupply-on-completion u m -> n

This table is the minimum amount of supply of each material type m guaranteed to a

newly completed unit of type u. If not already available to the unit, it will be newly

generated. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 203

4.22.8 Repair

Units can restore their own and each other's hp by doing repairs. Repair requires a repair action.

The action points for this action are taken from both the unit being repaired and the repairer (using

the same table acp-to-repair). When a unit repairs itself, the action cost is counted once only.

ActionTyperepair unit

This is the action of repairing the given unit.

Tableacp-to-repair u1 u2 -> acp

This table is the number of action points used up by a unit of type u1 doing one repair

action on a unit of type u2. Defaults to 0, which disallows the action.

Tablehp-per-repair u1 u2 -> .01hp

This table is the hundredths of a hp that a single repair action by a unit of type u1

restores to a unit of type u2. The fraction of this over 100 is added to hp directly, while

the < 100 fraction is added probabilistically. (For example, a value of 160 means that

1 hp will be added for each action, and there is a 60% chance that a second hp will be

added also.) Defaults to 0.

Materials may be needed and/or consumed during repair. The materials will be taken from the

unit being repaired, then from the repairer.

Tablematerial-to-repair u m -> .01n

This table is the amount of each material type m needed for one repair action. As with

hp-per-repair, the < 100 part is average, and > 100 is guaranteed. Defaults to 0.

Tableconsumption-per-repair u m -> .01n

This table is the amount of each material type m used up by a repair action.

The repairing unit must also not be too damaged itself to do repairs.

Tablehp-to-repair u1 u2 -> hp

This table is the minimum hp level required of a unit of type u1 to repair a unit of type

u2. If less, then u1 is too damaged to do any repairing. Defaults to 1, which allows

repair always.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 204

4.22.9 Producing Materials

Units can produce materials by explicit action.

ActionTypeproduce m

This action results in a quantity of material m coming into existence.

Tableacp-to-produce u m -> acp

This table is the acp used up by one produce action. Defaults to 0.

Tablematerial-per-production u m -> n

This table is the amount of material produced by u when acting to produce type m.

Defaults to 0.

Tablematerial-to-produce u m -> .01n

4.22.10 Transferring Materials

Although most movement of materials between units happens automatically (see backdrop econ-

omy description, section xxx), players can also do it explicitly. Players can both take materials

from other units, and give a unit's materials to others.

ActionTypetransfer unit m n

This is the action of transferring supply to the given unit unit. The desired amount is

n; if m is a valid material type, then only that type will be transferred, otherwise the

action will transfer all types of materials possible. The actual transfer amounts may

be less than n. [If unit is NULL, then is equiv to discarding material?]

Tableacp-to-unload u1 m -> acp

Tableacp-to-load u1 m -> acp

These tables are the number of action points used up by one material transfer action

from u1 to u2. The amount is independent of the material type being transferred. If

either value is 0, then the material cannot be transferred. Defaults to 0.

Tableunload-max u1 m -> n

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 205

Tableload-max u2 m -> n

These two tables determine how much of material m can be transferred out of a unit of

type u1 and into one of type u2 in one transfer action. The actual quantity transferred

by the action is the minimum of these two values. A value of 0 disallows manual

transfer. Both default to -1, which allows any amount to be transferred.

4.22.11 Changing Sides

ActionTypechange-side side

This is the action of changing the actee's side to side. The side can be any allowable

side, and the actee may be any unit controlled by the actor's side.

UnitTypePropertyacp-to-change-side acp

If the value of this property is greater than 0, then this type of unit can be ordered to

change to another given side. The type must also be allowed to be on the new side.

Defaults to 0.

4.22.12 Disbanding

Disbanding is the voluntary and controlled destruction of a unit, performed by the unit itself or

another unit. A disbanded unit always vanishes, rather than changing to its wrecked-type.

ActionTypedisband unit

This is the action of removing hp from unit. The unit will vanish if all its hit points

are gone.

Tableacp-to-disband u1 u2 -> acp

This table is the number of action points used by the unit u1 to do a disband action

on unit u2. Defaults to 0.

Tablehp-per-disband u1 u2 -> hp

This table is the number of hp lost in a disband action performed by u2. Defaults to

0, which disallows disbanding.

A disbanded unit can be scavenged for materials.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 206

Tablesupply-per-disband u m -> n%

This table is the percentage of the unit's supply that is recovered from a single dis-

band action. If the value is zero, then the unit's supply will not be recovered by the

disbanding process, and be lost permanently. If any supply remains when the unit's hp

is 0, then that supply will be lost also. Defaults to 100, which means that the entire

supply will be recovered on the �rst disband action.

Note that if an essential supply is 100% recovered before the unit is completely disbanded, then

it may die from starvation �rst. A partly-disbanded unit may still acquire supply from nearby

units, via the backdrop economy.

Tablerecycleable-material u m -> n

This table is the quantity of each type of material that becomes available when a unit is

completely disbanded. The materials go to transports, occupants, and nearby units, in

that order. Any materials exceeding capacities of these units will be discarded. These

materials become available only when the unit vanishes. Defaults to 0.

4.22.13 Transferring Parts

Units of variable size can transfer parts of themselves to other units, or create a new unit.

ActionTypetransfer-part n unit

This action moves n parts of the actee to unit, or creates a new unit if unit is omitted.

If n is negative, this takes from unit instead. If the action takes all the parts of any

involved unit, then it vanishes.

UnitTypePropertyacp-to-transfer-part acp

Defaults to 0.

4.22.14 Changing Type

ActionTypechange-type u

Tableacp-to-change-type u1 u2 -> acp

Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 207

Tablematerial-to-change-type u m -> n

Defaults to 0.

4.22.15 Combat

Xconq combat is somewhat abstract; the attacking player decides what sort of attack to mount

and perhaps when to retreat, but all else happens automatically.

Combat may last longer than a single action; it is then called a battle and divided into rounds.

The battle exists until one participant has a commitment of zero. Units in a battle need not attack,

and no damage will occur if none do so, but they cannot move away until no longer committed.

The attacker/defender distinction applies only to a single action.

ActionTypeattack unit [commitment]

This action is a direct attack on the given unit. The unit must be known to the

attacking unit's side.

ActionTypeoverrun x y z [commitment]

Overruns are a sort of combined attack/capture/move action. The basic theory of an

overrun is that the actor will attack, capture, or co-occupy the given destination. The

exact e�ects depend on the types and sides of units in the destination.

Tableacp-to-attack u1 u2 -> acp

This table is the number of action points used up by the attacker. Defaults to 1.

Tableacp-to-defend u1 u2 -> acp

This table is the number of action points used up by the defender. Defaults to 1.

Tableattack-range-min u1 u2 -> dist

This table is the minimum distance at which a unit can attack another. Defaults to 0.

Tableattack-range u1 u2 -> dist

This table is the maximum distance at which a unit can attack another. Defaults to 1.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 208

One round of combat consists of an attack, a reaction, and a calculation of e�ects.

The defender's reaction is completely automatic, and occurs as part of the attack action. The

defender's side does not get a chance to decide what to do until the next round, although doctrine

can constrain the randomness somewhat.

Tablesurrender-chance-per-attack u1 u2 -> n%

This table is the chance that u2 will surrender to u1 immediately upon being attacked.

Defaults to 0.

Tablewithdraw-chance-per-attack u1 u2 -> n%

This table is the chance that u2 will retreat from u1 immediately upon being attacked.

Defaults to 0.

Tableacp-for-retreat u1 u2 -> acp

In an overrun action, if all the defending units are destroyed, the attacker has su�cient acp and

mp, and the destination is safe to enter, then the attacker can move into the defenders' cell.

Firing is a kind of attack that can take place at a distance, involves no commitment or counter-

attack, and for which the type of ammo may be selected.

ActionTypefire-at unit [m]

This is the action of �ring at a given unit. If m is given, then that type will be used as

ammo, otherwise all available types will be used together.

ActionTypefire-into x y [z] [m]

This is the action of �ring into the cell at x,y. If z is given, then the �re will be

concentrated on units at that elevation. If m is given, then that type will be used as

ammo, otherwise all available types will be used together.

UnitTypePropertyacp-to-fire acp

If this property is greater than 0, this type may attack by �ring. Defaults to 0.

Tableacp-to-be-fired-on u1 u2 -> acp

This table is the acp lost when a unit is being �red upon. Defaults to 1.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 209

UnitTypePropertyrange dist

This property is the maximum distance to which a unit can �re. Defaults to 1.

UnitTypePropertyrange-min dist

This property is the minimum distance to which a unit can �re. Defaults to 0.

UnitTypePropertyelevation-at-max-range dist

[elaborate calc to interpolate while rising and falling, basically approximating a

parabola]

Both attack and �re combat calculate hits and damage in the same way.

Tablehit-chance u1 u2 -> n%

This table is the basic chance that a unit of type u1 will actually hit a unit of type u2.

Defaults to 0.

Tableattack-terrain-effect u1 t -> n%

Tabledefend-terrain-effect u2 t -> n%

These tables specify the e�ect of attacker's and defender's respective terrains on hit-

chance. These chances are multiplied with the basic hit chance. Default to 100.

Tablehit-cxp-effect u1 u2 -> n

This table is the e�ect of combat experience on hit chance. Its value is interpolated

according to actual experience (so that n is the e�ect when u1 is at its maximum

experience), then multiplied with the hit chance. Defaults to 100.

Tablehit-falloff-range u1 u2 -> n

This table is the maximum range at which the e�ectiveness of combat is not a�ected

by distance. Defaults to 1.

Tablehit-at-max-range-effect u1 u2 -> n%

This is the multiplier for the e�ectiveness of combat at the maximum range possible.

Defaults to 100.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 210

Tabledamage u1 u2 -> hp

This table is the basic amount of damage caused by a successful attack. The value is

a \dice spec" [explain somewhere] Defaults to 1.

The damage in an attack is always prorated by commitment; the table value is for attacks at

full commitment.

Tabledamage-cxp-effect u1 u2 -> n

This table is the e�ect of combat experience on damage. Its value is interpolated

according to actual experience (so that n is the e�ect when u1 is at its maximum

experience), then multiplied with both the dice size and the addend of the damage

spec. Defaults to 100.

Tablehp-min u1 u2 -> hp

This table is the lowest hp possible for u1 from attacks by u2. Further attacks by u2

are still valid, but have no e�ect. Defaults to 0.

You can set a unit to use a material as ammo.

Tableconsumption-per-attack u1 m -> n

Tablehit-by u2 m -> n

These tables specify material consumption in combat. For each material m, the min of

these two values is the amount of u1's supply used up in an attack on u2. Both default

to 0.

Tablematerial-to-fight u m -> n

This table is a minimum of each material that is necessary to either attack or defend.

Defaults to 0.

Transports can protect their occupants, and vice versa.

Tableprotection u1 u2 -> n%

Transport's destruction may leave occupants stranded on hex, will do some sort of auto-escape

or die if terrain is hostile. [use ferry-on-leave to decide]

Tablestack-protection u1 u2 -> n%

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 211

Several other side-e�ects of combat may also be de�ned.

Tableretreat-chance u1 u2 -> n%

This table is the chance that u2 will retreat if hit by u1. Defaults to 0.

Tablecxp-per-combat u1 u2 -> cxp

This table is the number of combat experience points gained by u1 by surviving a

combat round with u2. This applies equally to attackers and defenders. Defaults to 0.

4.22.16 Capture

Finally, a unit can attempt to capture another unit directly. This means that the unit's side

changes to that of the capturing unit.

ActionTypecapture unit

This is the action of capturing the given unit.

Tableacp-to-capture u1 u2 -> acp

This table is the number of acp used up by a capture action. Defaults to 0, which

disallows capture.

Tablecapture-chance u1 u2 -> n%

This table is the basic chance for u1 to capture u2. Defaults to 0.

Tableindependent-capture-chance u1 u2 -> n%

This table is the basic chance for u1 to capture an independent unit of type u2. If the

value is -1, then the chance of capture is given by the capture-chance. Defaults to

-1.

Tablescuttle-chance u t -> n%

This table is the chance that a unit whose capture is guaranteed will destroy itself

instead. Scuttling is destructive, so unit changes to wrecked-type. Occupants of an

about-to-be-captured unit will also attempt to scuttle. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 212

Tableoccupant-escape-chance u1 u2 -> n%

This table is the chance that an occupant u1 will escape during the capture of a unit

of type u2. Occupants that do not escape are either captured themselves or destroyed,

depending on their type and the capturing unit's side. Defaults to 0.

Tablehp-to-garrison u1 u2 -> n

This table is the number of hp that will be taken from the capturing unit u1 in order

to guard a captured u2. If the amount is the unit's full hp, then the unit will vanish

and any occupants will be distributed to the captured unit, to open terrain, or will

vanish themselves if there is no other option. Defaults to 0.

Tablecxp-per-capture u1 u2 -> ep

This table is the number of combat experience points gained by u1 by capturing u2.

Defaults to 0.

UnitTypePropertycxp-on-capture-effect n

This property gives the change in a unit's cxp due to being captured, expressed as a

multiplier. Defaults to 100.

4.22.17 Detonation

Detonation is an action and/or behavior that causes damage indiscriminately. The action spec-

i�es the location of the detonation, which may be in the unit's cell or an adjacent one. A unit that

detonates loses hp, changing to its wrecked-type if it loses all of its hp. It also hits every unit

within a speci�ed radius. Detonation may also a�ect terrain within a speci�ed radius.

ActionTypedetonate x y z

This action detonates the actee at the given location x,y,z.

UnitTypePropertyacp-to-detonate acp

This property is the number of action points used by one detonate action. Defaults to

0, which disallows detonation.

UnitTypePropertyhp-per-detonation hp

This property is the number of hp lost in each detonation. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 213

Tabledetonation-unit-range u1 u2 -> dist

This table gives the range of e�ect from detonation of u1. The severity falls o� according

to the inverse square law extrapolated from the adjacent cell damage. (1/4 severity at

range 2, 1/9 at 3, etc.) Defaults to 0.

Tabledetonation-damage-at u1 u2 -> hp

This table is the severity of u1 's hit on a unit u2 in the same cell. Defaults to 0.

Tabledetonation-damage-adjacent u1 u2 -> hp

This table is the severity of u1 's hit on a unit u2 in an adjacent cell. Defaults to 0.

Tabledetonation-terrain-range u t -> dist

Defaults to 0.

Tabledetonation-terrain-damage-chance u t -> n%

Defaults to 0.

Tableterrain-damaged-type t1 t2 -> n

Relative chance that terrain of type t1 damaged by a detonation will change into

another type t2. Defaults to 0.

The following tables and properties can be used for units that cannot detonate deliberately by

doing a detonate action.

Tabledetonate-on-hit u1 u2 -> n%

This table is the chance that a hit on u1 by a unit of type u2 will cause it to detonate

(once). Noncombat reductions in hp, such as attrition, have no e�ect. Defaults to 0.

UnitTypePropertydetonate-on-death n%

This property is the chance that if this type is about to die from a combat hit, it will

detonate �rst. Defaults to 0.

Tabledetonate-on-capture u1 u2 -> n%

This table is the chance that a unit of type u1 will detonate if a capture by a unit of

type u2 is about to succeed. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 214

Tabledetonate-on-approach-range u1 u2 -> dist

When a unit of type u2 on a non-trusted [?] side appears at a distance of dist or less,

then u1 will detonate. If -1, then unit will not detonate upon approach. Defaults to

-1.

Tabledetonation-accident-chance u t -> n.f%

This table is the chance that the unit will detonate spontaneously. This is checked

once/turn, at the beginning of the turn, and also upon each entry to a cell, if moving.

Defaults to 0.

4.22.18 Altering Terrain

ActionTypealter-terrain x y t

This action changes the type of the cell at x,y to t.

ActionTypeadd-terrain x y dir t

This action adds a connection or border of type t to the cell at x,y, in direction dir.

ActionTyperemove-terrain x y dir t

This action removes a connection or border of type t to the cell at x,y, in direction dir.

Tableacp-to-add-terrain u t -> n

Tableacp-to-remove-terrain u t -> n

For auxiliary terrain types, these tables are the costs to add or remove. For cell terrain,

the costs of removing the old type and adding the new type are added together.

Tablealter-terrain-range u t -> n

This table is the maximum distance at which a unit can alter terrain t. Defaults to 0,

which means that the unit can change only the terrain in its own cell.

At present, all sides that have seen the terrain once will be informed about any changes.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 215

4.23 Environmental Computation

This section describes how to set up backdrop computations.

4.23.1 Random Parameters

Environmental conditions may be computed randomly.

TerrainTypePropertytemperature-average n

This property is the average temperature for each type of terrain. Defaults to 0.

TerrainTypePropertytemperature-variability n

This property is the amount of totally random variation in the temperature in each

cell. Defaults to 0.

TerrainTypePropertywind-force-average

TerrainTypePropertywind-force-variability

TerrainTypePropertywind-variability

GlobalVariablewind-mix-range

This variable is the radius out to which winds interact. If 0, then winds in adjacent

cells can vary independently of each other, and do not interact in any way. Defaults to

0.

4.23.2 Season Parameters

WorldPropertyyear-length n

This property is the number of turns in an annual cycle. If less than 2, then no seasonal

e�ects will be calculated. Defaults to 0.

WorldPropertyday-length n

This property is the number of turns in a single day. If less than 2, then day and night

will not be calculated. Defaults to 0.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 216

Note that year-length and day-length are completely independent of each other, and it is

possible to have days that are longer than years.

AreaPropertyinitial-year-part n

This property is the season of the �rst turn in the game. Defaults to 0.

AreaPropertyinitial-day-part n

This property is the hour of the �rst turn in the game. Defaults to 0.

[need amount of daylight, twilight, etc]

4.23.3 Varying Activity with the Season

UnitTypePropertyacp-season-effect xxx

This property is the e�ect of the seasons on acp. This property is added to the basic

acp-per-turn. Defaults to ().

4.23.4 Varying Temperature with the Season

GlobalVariabletemperature-year-cycle

TerrainTypePropertytemperature-moderation-range distance

This property is the radius of the area whose raw temperatures will be averaged to get

the actual temperature. This can be very time-consuming to calculate, so only values

of 0 (no averaging) and 1 (average with adjacent cells) are recommended. Defaults to

0.

4.23.5 Weather Parameters

While the seasons change relatively slowly and predictably, weather can change drastically from

turn to turn. Xconq weather is based on a daily cycle of heating and cooling plus the movement

of water vapor.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 217

Weather and seasons can be de�ned completely independently of each other. The weather model

assumes a constant basic temperature, set from summer-equator if the season model is not being

used.

Atmospheric vapor is modelled by having a vapor quantity in each cell [de�ne a layer for this].

Vapor originates with evaporation from terrain, moves around with changing winds and air pressure,

and high levels result in clouds, rain, and snow.

4.24 Environmental E�ects

The environmental conditions include temperature, coatings such as snow, and atmospheric

conditions.

[specify these]

The current environmental conditions in each cell [or in world as a whole? or calc by regions?]

derive from a combination of three calculations: random, seasons, and weather.

4.24.1 Coating E�ects

[e�ects of coating should be increased attrition, decreased productivity, decreased activity and

mobility]

4.24.2 E�ects of Temperature on Units

Transports can protect their occupants from temperature extremes.

Tabletemperature-protection u1 u2 -> t/f

4.25 Economy

The following parameters control the automatic production, distribution, and consumption of

materials by units and by cells.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 218

4.25.1 Unit Production and Consumption

Units can be set to always produce some amount of material without taking explicit action.

Tablebase-production u m -> n

This table is the basic amount of each material m produced by a unit of type u in each

turn. Defaults to 0.

Tableoccupant-base-production u m -> n

This table is the base production of each material m when a unit of type u is an

occupant. Defaults to 0.

Tableproductivity u t -> n%

This base is the percentage productivity of a unit of type u when on terrain of type t.

This is multiplied with the basic production rate to get actual material production, so

productivity of 0 completely disables production on that terrain type, and productivity

of 100 yields the rate speci�ed by base-production. Defaults to 100.

Tableproductivity-min u m -> n

Tableproductivity-max u m -> n

These tables are the lower and upper bounds on actual production after multiplying

by productivity. Default to 0 and 9999, respectively.

Tablebase-consumption u m -> n

This table sets the amount of materials consumed by the unit in a turn, even if it

doesn't move or do anything else. Defaults to 0.

Tablehp-per-starve u m -> hp

If the unit runs out of a material that it must consume, this table speci�es how many

hp it will lose each turn that it is starving. If starving for several reasons, loss is max

of starvation losses, not the sum. Defaults to 0.

Tableconsumption-as-occupant u m -> n%

This table is the consumption by a unit of type u1 when it is an occupant of u2,

expressed as a percentage of its base-consumption. This is useful for units such as

planes which always consume fuel in the air but not on the ground. Defaults to 100.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 219

4.25.2 Terrain Production and Consumption

Materials may be produced by cells, redistributed, and also taken up by units. Some amount of

material may need to stay in the cell's storage, or the type of terrain might change. Exhaustion is

tested after all consumption has been accounted for.

Tableterrain-production t m -> n

This table is the amount of each material m produced by a cell of the given type t in

each turn. Defaults to 0.

Tableterrain-consumption t m -> n

This table is the amount of material m consumed by a cell of type t each turn. If

insu�cient material is available, then the terrain may change type. Defaults to 0.

Tablechange-on-exhaustion-chance t m -> n%

This table is the chance that a cell of type t, with no supply of material of type m, will

become exhausted and change to its exhausted type.

Tableterrain-exhaustion-type t1 m -> t2

If t2 is not non-terrain, then this table says that any cell with terrain t1 that is

exhausted will change to t2. If several materials are exhausted in the same turn, then

the lowest-numbered material type will determine the new terrain type. Defaults to

non-terrain.

Tablepeople-consumption m1 m2 -> n

This table is the base consumption per turn by people of type m1 of each other material

type m2. Defaults to 0.

Tablepeople-production m1 m2 -> n

This table is the people of type m1 base production per turn of each other material

type m2. Defaults to 0.

4.25.3 Supply Lines

In real life, material production and consumption rarely occur in the same place at the same

time. For some games, the player must transfer materials manually, by loading and unloading from

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 220

units. However, this can be time-consuming and di�cult, and is best reserved for scarce and/or

valuable materials. For more common materials, Xconq provides supply lines.

Tablein-length u1 m -> dist

Tableout-length u2 m -> dist

These two tables together determine the length of supply lines between units. The

given type of material can only be transferred from unit type u1 to unit type u2 if the

distance is less than the minimum of the in-length of u1 and the out-length of u2.

For instance, the in-length for a �ghter's fuel might be 3 cells, while the out-length

of fuel from a city is 4 cells. Then the �ghter will be constantly supplied with fuel when

within 3 cells of a city. If the �ghter's out-length is -1, it will never transfer any fuel to

the city. An in- or out-length of 0 means that the two units must be in the same cell,

while a negative length disables the automatic transfer completely. Long out-length

lines should be used sparingly, since the algorithm uses the out-length to de�ne a

radius of search for units to be resupplied. Both default to 0.

4.25.4 Trade

To move materials automatically between cells, you must de�ne the demand and supply rela-

tionships, as well as the rate and distance that materials can move.

Demand for a material originates with consumption and construction needs, issuing either from

a side or from some other part of the economy.

4.25.5 Taxation

A side can set a taxation rate, which is the amount of material that will be taken from the

cell-based economy and given to units on that side.

Taxes may be negative, which will have the e�ect of returning materials from units back to cells.

Taxation is the last step in economic calculations.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 221

4.25.6 Material Conversion

Some types of materials can be converted or combined into other types of materials.

[do by letting production vary according to consumption?]

[in general, should distinguish productive from consumptive units, specify as limits on in/out

for each rtype]

4.26 Random Events

GlobalVariablerandom-events method-list

This variable is a list of random event methods that will be run at the end of each

turn. The list is not ordered.

4.26.1 Terrain Attrition

Attrition is the automatic loss of hit points due to being in certain types of terrain.

Methodattrition-in-terrain

For every unit not in a transport, this method computes the chance to lose hit points,

then damages the unit accordingly. This method runs once per turn.

Tableattrition u t -> .01hp

This table is the rate of loss of hp per turn. The terrain used is cell or connection

terrain as appropriate for the unit's position. Defaults to 0.

4.26.2 Terrain Accident

Accidents result in the damage or disappearance of a unit in the open in some kinds of terrain.

Methodaccidents-in-terrain

For every unit not in a transport, this method computes the chance to be hit or to

vanish completely. This method runs once per turn.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 222

Tableaccident-hit-chance u t -> .01n%

This table is the chance of the unit being hit while in the given terrain. Defaults to 0.

Tableaccident-damage u t -> hp

This table is the hp that will be lost in an accident. Defaults to 0.

Tableaccident-vanish-chance u t -> .01n%

This table is the chance of the unit simply vanishing while in the given terrain. Defaults

to 0.

4.26.3 Revolt

Revolt is a spontaneous change of side, occurring in place of a side-given unit action. The new

side may be none (independence) or another side. [only if other side wants it?] [50/50 chance?]

Methodunits-revolt

For each completed unit, this method decides whether the unit revolts, then changes

its side.

UnitTypePropertyrevolt-chance .01n%

This property is the chance for the unit to revolt spontaneously. Defaults to 0.

4.26.4 Surrender

Methodunits-surrender

For each completed unit, this method checks whether the unit will surrender to a nearby

unfriendly unit.

Tablesurrender-chance u1 u2 -> .01n%

This table is the chance that a unit of type u1 will change its side to match the side of

a unit u2 that is within the surrender-range for the two types. Defaults to 0.

Tablesurrender-range u1 u2 -> dist

This table is the distance out to which a unit of type u1 will surrender to a unit of

type u2. Defaults to 1.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 223

4.27 The Random State

It is useful to be able to restart the random number generator consistently.

GlobalVariablerandom-state n

This variable is the state of the random number generator. If this is not used, then the

initial state of the random number generator will be set in a system-dependent way.

4.28 Images and Image Families

The imf form de�nes graphical images in a platform-independent way. An image family is a

named collection of images of varying sizes and depths.

Formimf name [properties] [images]

This form declares an image family to exist, with the name name and properties, and

consisting of the speci�ed images. Each image has the form ((w h [tile]) [proper-

ties] (type data...) ...), where w and h are its width and height, respectively, the

type may be one of color, mono, or mask, and the data consists of strings of hexadeci-

mal digits. The data strings may include slashes, which have no e�ect on interpretation,

but are useful to indicate each row of an image. Color images may also have additional

properties, which come between the type and the data.

Multiple forms with the same name may occur, and each adds to the family, overwriting

individual image parts that are of the same size and depth.

Symboltile

If this symbol appears following the dimensions of an image, it indicates that the image

is a pattern tile rather than a single image.

ImagePropertyactual w h

This property is the actual size of the image data. [Ever really used?]

ImagePropertyembed name

This property speci�es that another image, similar to the image family named by name,

is already embedded within the image, and so Xconq need not superimpose such an

image itself. This may occur when an image has a \builtin" side emblem, or is readily

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 224

identi�able as belonging to a particular side, and it would be redundant for Xconq to

add an emblem when displaying a unit.

ImagePropertyembed-at x y w h

ImagePropertymono data...

This property indicates that the data represents a monochrome image.

ImagePropertymask data...

This property indicates that the data represents a mask.

ImagePropertycolor [properties] data...

This property indicates that the data represents a color image.

ColorImagePropertypixel-size n

This property is the number of bits used to encode each pixel.

ColorImagePropertyrow-bytes n

This property is the number of bytes in each row of the image.

ColorImagePropertypalette [name | (index r g b) ...]

This property is the color palette that should be used with the image.

Formpalette name (index r g b) ...

This form de�nes a palette with the given name.

Formcolor name r g b

This form names the color.

Note that for the purposes of stability and change tracking, tools that generate image families

use a more restricted format. This format requires a separate imf form for each size of image, the

size is on the same line as the imf name, and each image/mask is on a separate line, indented by

2. (See the existing lib/*.imf �les for further detail.)

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 225

4.29 Default Display Style

The exact style of display depends on the user interface and on user preferences, but for some

games, you may want to encourage a particular style by making it be the default.

GlobalVariableunseen-char str

This variable is a string whose �rst character will be used to represent unexplored

terrain. If the string consists of two characters, the second char will be scattered

throughout a �eld of the �rst char. Defaults to "".

GlobalVariableunseen-color str

This variable is the name of a color that will be used to represent unexplored terrain.

Defaults to "".

GlobalVariableunseen-image-name str

This variable is the name of an image that will be used to represent unexplored terrain.

Defaults to "".

GlobalVariablegrid-color str

This variable is the name of a color to use to draw the cell-separating grid. Defaults

to "".

4.30 Dates and Time

You can make Xconq display game time as a calendar date, rather than as a simple turn number.

GlobalVariablecalendar type data. . .

This variable is the description of the calendar type that will be used. If none, then

turns will be reported numerically starting from 1. If usual, then the standard Grego-

rian calendar will be used. (Other calendars may be supported in the future.) Defaults

to (), which is equivalent to (number "turn").

For the usual calendar, the data de�nes how long a turn is, in terms of the calendar.

For instance, a time measure of "day" (and a base date of "1 Jan 1900") will result

in turns "1 Jan 1900", "2 Jan 1900", etc, while a date unit of "year" will yield just

"1900", "1901", and so forth.

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 226

If the numeric or number calendar is in use, then a data of "day" will yield "day 1",

"day 2", etc.

The rest of this variable lists the name of each season and the turns within a year for

which it is appropriate. A twelve-turn year with four seasons could be

((0 2 "winter") (3 5 "spring") (6 8 "summer") (9 11 "autumn"))

If any number ranges overlap, then the �rst match will be used, while if a particular

turn has no named season, then it will go unnamed in the display.

Symbolnone

Symbolusual

GlobalVariableinitial-date str

This variable is the date, in the speci�ed calendar system, of the �rst turn. Defaults

to "", which has the e�ect of setting the initial date to be whatever the calendar does

with turn number 1.

GlobalVariableturn n

This variable is the number of the current turn. Defaults to 0.

GlobalVariablelast-turn n

This variable is the number of the last turn. Defaults to -1, which means that there is

no limit on the number of turns.

GlobalVariableextra-turn-chance n%

This variable is the chance that the game will go one more turn after the last-turn.

Xconq is currently limited to games of 32,767 turns.

4.30.1 Real Time

A game may also be limited in real time.

GlobalVariablereal-time-for-game seconds

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 227

GlobalVariablereal-time-per-turn seconds

GlobalVariablereal-time-per-side seconds

GlobalVariableelapsed-real-time seconds

This is the di�erence in real time between the start of the game and its current state.

4.31 Miscellany

GDL forms in this section are those that do not seem to �t anywhere else.

UnitTypePropertyname-internal str

Internally used type name.

4.31.1 Debugging

Formprint value

This form prints to a console (or whatever the interface provides) the object value, in

GDL syntax.

4.31.2 Internal AI Data

These are normally computed and used internally by AIs. They can be �lled in by a game

design, but the e�ects are undocumented and will depend on the working of the AI using these

forms.

XXXzz-fr

XXXzz-b

XXXzz-bb

XXXzz-transport

XXXzz-c

XXXzz-cm

XXXzz-cc

XXXzz-bw

4 May 1995DRAFT d35 DRAFT d35

Chapter 4: Reference ManualXconq 228

Tablezz-basic-hit-worth

Tablezz-basic-capture-worth

Tablezz-basic-transport-worth

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 229

5 HackingXconq

Although Xconq and its GDL have considerable power and
exibility already built in, you may

decide that you want to modify the Xconq program itself. You should know what you are doing;

Xconq is designed to be modi�able, but it is not simple code. In the past, people have found it

easy to make changes, but much harder to make them correctly!

Xconq is designed to be portable to di�erent types of user interfaces. It is based on a kernel-

interface architecture, where the semantics of the game, as documented in the preceding chapters,

is part of the kernel, while the main program and player interaction are speci�c to each system.

Xconq is also designed to allow the addition of new AIs. The default "mplayer" AI, while it

is
exible and will attempt to play any side in any game, does not have the depth that is often

important to success in a game. Its position is that of a generic AI program that can learn to play

any game, given only the rules; while such a program might �gure out how to win at tic-tac-toe or

checkers, it is not going to be particularly good at the subtleties of go or chess.

The Xconq GDL is also extensible. This is useful when the basic GDL does not provide some

feature that is essential to a game.

5.1 Kernel

The kernel is the part of Xconq shared by all interfaces. It does no I/O except to �les or for

debugging.

Speci�cally, the kernel supplies the following functionality:

Data structure initialization. (init_data_structures)

Game module loading and interpretation. (load_game_module)

Initial player/side setup. (make_trial_assignments)

Synthesis methods. (run_synthesis_methods)

Final player/side setup. (make_assignments)

Game execution. (run_game)

Implementations of unit actions. (prep_*_action)

AI players.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 230

Help Info (get_help_text)

Game saving and scorekeeping.

5.1.1 Con�guration Options

There are a small number of options available to alter aspects of the kernel. These are de�ned

in kernel/config.h.

[eventually describe all of them?]

5.1.2 Porting the Kernel

The kernel should be restricted to ANSI C, and should avoid or optionalize features not in

\traditional" C, such like prototypes. Although the kernel uses stdio, it does not assume the

presence of a console (stdin, stdout, stderr). For instance, a graphical interface can arrange to

disable stdin entirely and direct stdout/stderr into a �le (see the Mac interface sources for an

example).

You should be careful about memory consumption. In general, the kernel takes the attitude

that if it was worth allocating, it's worth hanging onto; and so the program does not free much

storage. Also, nearly all of the allocation happens during startup. Since a game may run for a very

long time (thousands of turns perhaps), it is important not to run the risk of exhausting memory

at a climactic moment in the game!

Also, the kernel should not exit on its own. The only permissible times are when the internal

state is so damaged that interface error-handling routines (see below) cannot be called safely. Such

situations are rare. If you add something to the kernel and need to handle error situations, then you

should call one of the interface's error-handling routines. There are distinct routines for problems

during initializations vs problems while running, and both error and warning routines. Warning

routines may return, so kernel code should be prepared to continue on, while error routines will

never return.

5.1.3 Writing New Synthesis Methods

You can add new synthesis methods to Xconq. This may be necessary if an external program

does not exist, is unsuitable, or the external program interface is not available. Synthesis methods

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 231

should start out by testing whether or not to run, and should never assume that any other method

has been run before or after, nor that any particular game module has been loaded. However,

\tricks" are usually OK, such as setting a particular global variable in a particular module only,

then having the synthesis method test whether that global is set. See the �le init.c for further

details.

Synthesis methods that take longer than a second or two to execute should generate percent-done

info for the interface to use, via the function announce_progress. Be aware that most methods

will be O(n) or O(n*n) on the size of the world or the number of units, so they can take much

longer to set up a large game than a small one. Players will often go overboard and start up giant

games, so this happens frequently. Also, Xconq may be running on a much smaller and slower

machine than what you're using now.

5.1.4 Writing New Namers

[describe hook and interface]

5.1.5 Writing New AIs

You can add new types of AIs to Xconq. You would do this to add di�erent strategies as well

as to add AIs that are programmed speci�cally for a single game or class of games. (This is useful

because the generic AI does not always understand the appropriate strategy for each game.)

You have to design the object that is the AI's \mental state". If your AI need only react to the

immediate situation, then this object can be very simple, but in general you will need to design

a fairly elaborate structure with a number of substructures. Since there may be several AIs in a

single game, you should be careful about using globals, and since Xconq games may often run for

a long time, you should be careful not to consume memory recklessly.

Name. This is a string, such as "mplayer". It may be displayed to players, so it should not

be too cryptic.

Validity function. This runs after modules are loaded, and during player/side setup, and

decides whether it can be in the given game on the given side. [have a chain of fallback AIs,

or blow o� the game?]

Game init function. This runs before displays are set up, just in case a display examines the

AI's state.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 232

Turn init function. This runs after all the units get their acp and mp for the turn, but before

anybody actually gets to move.

Unit order function. This gets run to decide what the unit should do. Usually it should be

allowed to follow its plan. [do separate fns for before and after plan execution?]

Event reaction functions. [how many?]

Note that these functions have very few constraints, so you can write them to work together in

various ways. For instance, an AI can decide whether to resign once/turn, once/action, or once for

each 4 units it moves, every other turn.

[describe default AI as illustrative example]

5.1.6 Extending GDL

GDL has been designed so as to be relatively easily extensible. I say \relatively" because

although it is quite easy to de�ne a new keyword or table, it is not always so easy to integrate the

implementation code into the kernel correctly.

Instead of actually changing GDL, you can experiment with an addition by using the extensions

property of unit, material, and terrain types. In the code, you call get_u_extension, pass it the

type, name of the property, and a default to return if the value was not given. In the game

de�nition, the designer would say (unit town (extensions (my-ext xxx))).

[show examples for global, property, table, event, task]

The �le gvar.def de�nes all the global variables.

The �le utype.def de�nes all the unit type properties.

From time to time, it may be worthwhile to extend unit objects. This should be rare, because

games may have thousands of units, and each unit requires at least 100 bytes of storage already, so

you should avoid making them any larger. Properties of an individual unit are scattered through

keyword.def. Once the structure slot is added, you just need to add reading and writing of the

value, using the K_xxx enum that was de�ned with the keyword. You should attempt to make a

reasonable default and use it to avoid writing out the value, so as to save time when Xconq reads

a game in.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 233

GDL symbols beginning with zz- should be reserved for the use of AI code. You may want to

add some of these, either to serve as a convenient place for AIs to cache the results of their analyis

of a game, or else as a way for game designers to add \hints" for AIs that know to look at them.

5.2 Interface

The player interface is how actual players interact with the game. It need not be graphical or

even particularly interactive, in fact it could even be a network server-style interface! However, this

section will concentrate on the construction of interactive graphical interfaces.

An interface is always compiled in, so it has complete access to the game state. However, if

your version of Xconq has any networking support, the interface should not modify kernel struc-

tures directly, but should instead use kernel routines. The kernel routines will forward any state

modi�cations to all other programs participating in a game, so that everybody's state remains

consistent.

A working interface must provide some level of capability in each of these areas:

Main program. The interface includes the main application and any system-speci�c infrastruc-

ture, such as event handling.

Interpretation of startup options. This includes choice of games, variants, and players.

Display of game state. This includes both textual and graphical displays, both static and

dynamic.

Commands/gestures for unit tasks and actions, and for general state modi�cations.

Display update in response to state changes.

Realtime progress. Some game designs require the interface to support realtime.

Error handling.

The �le skelconq.c in the kernel directory is a good example of a minimum working interface.

Don't let interfaces ever set kernel object values directly, always go through calls that can be

\siphoned" for networking.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 234

5.2.1 Main Program

The interface provides main() forXconq; this allows maximum
exibility in adapting to di�erent

environments. In a sense, the kernel is a large library that the interface calls to do game-related

operations.

There is a standard set of calls that need to be made during initialization. The set changes from

time to time, so the following extract from `skelconq' should not be taken as de�nitive:

init_library_path(NULL);

clear_game_modules();

init_data_structures();

parse_command_line(argc, argv, general_options);

load_all_modules();

check_game_validity();

parse_command_line(argc, argv, variant_options);

set_variants_from_options();

parse_command_line(argc, argv, player_options);

set_players_from_options();

parse_command_line(argc, argv, leftover_options);

make_trial_assignments();

calculate_globals();

run_synth_methods();

final_init();

assign_players_to_sides();

init_displays();

init_signal_handlers();

run_game(0);

Note that this sequence is only straight-through for a simple command line option program; if

you have one or more game setup dialogs, then you choose which to call based on how the players

have progressed through the dialogs. The decision points more-or-less correspond to the di�erent

parse_command_line calls in the example. You may also need to interleave some interface-speci�c

calls; for instance, if you want to display side emblems in a player/side selection dialog, then you

will need to arrange for the emblem images to be loaded and displayable, rather than doing it as

part of opening displays.

Once a game is underway, the interface is basically self-contained, needing only to call run_game

periodically to keep the game moving along. run_game takes one argument which can be -1, 0, or

1. If 1, then one unit gets to do one action, then the routine returns. If 0, the calculations are gone

through, but no units can act. If -1, then all possible units will move before run_game returns.

This last case is not recommended for interactive programs, since moving all units in a large game

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 235

may take a very long time; several minutes sometimes, and run_game may not necessarily call back

to the interface very often.

5.2.2 Startup Options

Although there are many di�erent ways to get a game started, you have three main categories

of functionality to support: 1) selection of the game to play, 2) setting of variants, and 3) selection

of players. For command-line-using programs, the �le cmdline.c need only be linked in to provide

all of this functionality. For graphical interfaces, you will need to design appropriate dialogs. This

can be a lot of work, exacerbated by the fact that these dialogs will be the �rst things that new

Xconq players see, and will therefore shape their opinions about the quality of the interface and of

the game.

[more detail about what has to be in dialogs?]

Interface code should check all player specs, not proceed with initialization until these are all

valid.

Both standard and nonstandard variants should vanish from or be grayed out in dialog boxes if

irrelevant to a selected game.

5.2.3 Progress Indication

Some synthesis methods are very slow, and become even slower when creating large games, so

the kernel will announce a slow process, provide regular updates, and signal when the process is

done. The interface should display this in some useful way. In general, progress should always be

displayed, although one could postpone displaying anything until after the �rst progress update,

calculate an estimated time to completion, and not display anything if that estimate is for less than

a few seconds. However, this is probably unnecessary.

void announce_read_progress()

The kernel calls this regularly while reading game de�nitions. Interfaces running on slow

machines should use this to indicate that everything is still working; for instance, the Mac

interface animates a special cursor that indicates reading is taking place.

void announce_lengthy_process(char *msg)

The kernel calls this at the beginning of each synthesis. The argument is a readable string

that the interface can show to players.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 236

void announce_progress(int pctdone)

The kernel may call this at milestones within a synthesis. The number ranges from 0 to 100.

void finish_lengthy_process()

The kernel calls this at the end of a synthesis.

5.2.4 Feedback and Control

The interface should provide visible feedback for every successful unit action initiated directly

by the player, but it need not do so for failures, unless they are serious. It is better to prevent

nonsensical input, for instance by disabling menus and control panel items. Simple interfaces such

as for character terminals will have to relax these rules somewhat.

Interfaces should enable/disable display of lighting conditions.

5.2.5 Commands

There is no single correct way to support direct player control over units. Although keyboard

commands and mouse clicks are obvious choices, it would be very cool to allow a pen or mouse to

sketch a movement plan, or to be able to give verbal orders...

There is a common set of ASCII keyboard commands that are recommended for all Xconq

interfaces that use a keyboard. These are de�ned in kernel/cmd.def. If you use these, Xconq

players will be able to switch platforms and still use familiar commands. cmd.def de�nes a single

character, a command name, a help string, and a function name, always in the form do_*. However,

cmd.def does not specify arguments, return types, or behavior of those functions, so each interface

must still de�ne its own command lookup and calling conventions.

Pre�xed number args should almost always be repetitions.

If already fully fueled, refuel commands should come back immediately.

A quit cmd can always take a player out of the game, but player may have to agree to resign.

Player can also declare willingness to quit or draw without actually doing so, then resolution requires

that everybody agree. If quitting but others continuing on, also have option of being a spectator.

Could have notion of "leaving game without declaring entire game a draw" for some players. Allow

for a timeout and default vote in case some voters have disappeared mysteriously. Must never

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 237

force a player to stay in. Add a notion of login/logout so a side can be inactive but untouchable,

possibly freezes entire game if a side is inactive. 1. if one player or no scoring con�rm, then shut

player down if one player, then shut game down 2. if side is considered a sure win (how to tell? is

e�ectively a win condition then) or all sides willing to draw con�rm, take side out, declare a draw,

shut player down 3. if all sides willing to quit take entire game down 4. ask about resigning - if

yes, resign, close display, keep game running if no, ask if willing to quit and/or draw, send msg to

other sides Kernel support limited to must resign to quit(side), similar tests.

5.2.6 Error Handling

The interface must provide implementations of these error-handling functions:

void low_init_warning(str)

This is for undesirable but not necessarily wrong things that happen while setting up a game.

For instance, if players start out too close or too far from each other, it will often a�ect the play

of the game adversely, so the kernel issues a warning, therby giving the prospective players a

chance to cancel the game and start over. The kernel's warning message should indicate any

likely results of continuing on, so the players can decide whether or not to chance it.

low_init_error(str)

This function should indicate a serious and unrecoverable error during initialization. It should

not return to its caller.

low_run_warning(str)

Warnings during the game are rare but not unknown. They are very often due to bugs in

Xconq, so any occurrence should be investigated further. It is possible for some game designs

to have latent
aws that may result in a warning. In any case, the interface should allow the

players to continue on, to save their game and quit, by calling save_the_game, or else quit

without saving anything.

low_run_error(str)

In the worst case, Xconq can get into a situation, such as memory exhaustion, where there is

no way to continue. The kernel will then call run_error, which should inform players that

Xconq must shut itself down. They do get the option of saving the game, and the routine

should call save_game_state?? to do this safely. This routine should also not return to its

caller.

printlisp(obj)

This is needed to print GDL objects to \stdout" or its equivalent.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 238

5.2.7 Textual Displays

Text can take a long time to read, and can be di�cult to provide in multiple human languages.

(What, you thought only English speakers played Xconq? Think again!) Therefore, text displays

in the interfaces should be as minimal as possible, and derive from strings supplied in the game

design, since they can be altered without rebuilding the entire program.

(Xconq is not, at the moment, completely localizable, but that is a design goal.)

5.2.8 Display Update

Usually the interface's display is controlled by the player, but when run_game is executing, it

will frequently change the state of an object in a way that needs to be re
ected in the display

immediately. Examples include units leaving or entering a cell, sides losing or winning, and so

forth. The interface must de�ne a set of callbacks that will be invoked by the kernel.

update_cell_display(side, x, y, rightnow)

[introduce area (radius or rect) update routines?]

update_side_display(side, side2, rightnow)

update_unit_display(side, unit, rightnow)

update_unit_acp_display(side, unit, rightnow)

update_turn_display(side, rightnow)

update_action_display(side, rightnow)

update_action_result_display(side, unit, rslt, rightnow)

update_fire_at_display(side, unit, unit2, m, rightnow)

update_fire_at_display(side, unit, x, y, z, m, rightnow)

update_event_display(side, hevt, rightnow)

update_all_progress_displays(str, s)

update_clock_display(side, rightnow)

update_message_display(side, sender, str, rightnow)

update_everything()

Each of these routines has a
ag indicating whether the change may be bu�ered or not. To

ensure that bu�ered data is actually onscreen, the kernel may call flush_display_buffers(),

which the interface must de�ne.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 239

flush_display_buffers()

These may or may not be called on reasonable sides, so the interface should always check �rst

that side actually exists and has an active display. [If side has a "remote" display, then interface

has to forward?? No, because remote copy of game is synchronized and does own update xxx calls

more-or-less simultaneously]

Note that this is as much as the kernel interests itself in displays. Map, list, etc drawing and

redrawing are under the direct control of the interface code.

5.2.9 Types of Windows and Panels

Xconq is best with a window-style interface, either tiled or overlapping. Overlapping is more

exible, but also more complicated for players. In the following discussion, "window" will refer

to a logically uni�ed part of the display, which can be either a distinct window or merely a panel

embedded in some larger window.

The centerpiece window should be a map display. This will be the most-used window, since it

will typically display more useful information than any other window. This means that it must

also exhibit very good performance.

When a game starts up, the map display should be centered on one of the player's units,

preferably one close to the center of all the player's units.

Another recommended window is a list of all the sides and where they stand in both the current

turn and in the game as a whole. Each side's entry should include its name, a progress bar or other

doneness indicator, and room for all the scores and scorekeepers that apply to that side.

If possible, you should also implement some kind of "face" or group of faces/expressions for

a side, so get a barbarian's face to repn a side instead of generic. Could have interface generate

remarks/balloons if face clicked on, perhaps a reason for feelings, slogan, citation of agreement or

broken agreement, etc. Need 5 faces for hostile, unfavorable, neutral, favorable, friendly/trusting.

Overall status of side rules:

all grayed: out of game

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 240

grayed and x-ed out: lost

???: won

Progress bar rules:

missing: no units or no ai/no display

grayed frame: no acting units

empty solid frame: all acted

part full, black: partly acted

part full, gray: �nished turn

5.2.10 Imaging

Imaging is the process of drawing pictorial representations. Not every interface needs it. For

instance the curses interface is limited to drawing two ASCII characters for each cell, and its

imaging code just has to choose which two to draw. However, full-color bitmapped displays need

more attention to the process of getting an image onscreen.

No graphical icon should be drawn smaller than about 8x8, unless it's a text character drawn

in two contrasting colors.

Interfaces should cache optimal displays for each mag, not search for best image each time.

Could allow 1-n "display variants" for all images, and for each orientation of border and con-

nection.

Imaging variations can be randomly selected by UI, but must be maintained so redraws are

consistent.

Allow the 64 bord/conn combos as single images, also advantage that all will be drawn at once.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 241

Draw partial cells around edges of a window, to indicate that the world continues on in that

direction.

Interface needs to draw only the terrain (but including connections and borders) in edge cells.

Could draw grid by blitting large light pattern over world, do by inverting so is easy to turn

on/o�. Do grids by changing hex size only in unpatterned color?

Draw large hexagon or rect in unseen-color after clearing window to bg stipple (if unseen-color

di�erent). Polygon should be inside area covered by edge hexes, so unseen area more obvious. Make

large unseen-pattern that includes question marks?

If picture not de�ned for a game, use some sort of nondescript image instead of leaving blank.

(small "no picture available" for instance, like in yearbooks)

To display night, could invert everything (b/w) or do 25/50% black (color) (let game set, so

some games could be all-black at night, nothing visible) (have day/night coverage for each utype?)

To display elevation, use deep blue -> light gray -> dark brown progression, maybe also contour

lines? To draw contour lines, for each hex, look at each adj hex. If on other side of contour's

elev, compute interpolated point (in pixels) and save or draw a line to (one or both of the two)

adj hex borders if they also have the contour line pass through. Guaranteed that line is part of

overall contour line. Cheaper approach doesn't interpolate, just draws to midpoint of hex border

(probably OK for small mags). Could maybe save contour lines once calculated (at each mag, lots

of mem).

5.2.11 Animation

In addition to basic imaging, you can also support requests for the playing of animations or

movies.

The kernel just calls schedule_movie to create one, and then play_movies when it is time to

run all the movies that have been scheduled. It is up to the interface to do something useful. Note

that the kernel is not aware of the movies' timing, so it is better not to call run_game until all the

movies have �nished playing. (Yes, this would be a good future enhancement!)

schedule_movie(side, movie_type, args...)

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 242

play_movies(sidemask)

Run all of the animations, sounds, etc that were scheduled previously, for the sides enabled in

the side mask. It is allowable for the interface not to act on any user input while these are

playing.

Several types of movies are prede�ned, so your interface can recognize them specially. These

include movie_miss, movie_hit, movie_death, which are scheduled for the appropriate outcomes

of combat.

5.2.12 Game Designer's Tools

An interface is not required to provide any sort of online designing tools, or even to provide a

way to enable the special design privileges. Nevertheless, minimal tools can be very helpful, and

you will often �nd that they are helpful in debugging the rest of the interface, since you can use

them to construct test cases at any time.

A basic set of design tools should include a way to enable and disable designing for at least one

side, a command to create units of a given type, and some sort of tool to set the terrain type at a

given location. A full set would include \painting" tools for all area layers, including geographical

features, materials, weather, side views, and so forth - about a dozen in all.

A least one level of undo for designer actions is very desirable, although it may be hard to

implement. A useful rule for layers is to save a layer's previous state at the beginning of each

painting or other modi�cation action, when the mouse button �rst goes down.

The designer will often want to save only the part of the game being worked on, for instance

only the units or only the terrain. The "save game" action should give designers a choice about

what to save. For units particularly, the designer should be able to save only some properties of

units. The most basic properties are type, location, side, and name/number. The unit id should

not be saved by default, but should have its own option (not clear why).

Note that because game modules are textual and can be moved easily from one system to

another, it is entirely possible to use one Xconq (perhaps on a Mac) to design games to be played

on a Unix box under X11, or vice versa. Transferring the imagery is more di�cult, although there

is some support for the process.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 243

5.2.13 Porting and Multiple Interfaces

In theory, it is possible to compile multiple interfaces into a single Xconq program, but this would

be hard at best. They would have to be multiplexed appropriately and not con
ict anywhere in

the address space. Sometimes this is intrinsically impossible; how could you compile the Mac and

X interfaces into the same program, and would the result be a Mac application, a Unix program,

or what?

5.2.14 Useful Displays

This is a collection of minor but useful displays that might be worth adding to an interface.

A \mouse over" is a line or two of text that describes what the mouse/pointer is currently

pointing at, and which updates automatically as the player moves the pointer around. This is

better for high-bandwidth interfaces, since there may be a lot of updating involved. The volume

can be reduced slightly by only redisplaying when the mouse moves, or, better, when what is being

looked at changes. This is probably best done by recalculating the line of text and then comparing

it to what has been drawn already, although if the display is very fast, you may not save much in

drawing time. One approx 40-char lines covers basic info, such as terrain type and unit type; more

detail may require multiple long lines.

5.2.15 Useful Options

A \follow action" option scrolls the screen to where the last event happened, such as combat.

[etc]

5.2.16 Debugging Aids

Xconq is complicated enough that you can't expect to throw together a complete working

interface over the weekend. Therefore, you should build some debugging aids into the interface.

You can ifdef with the
ag DEBUGGING so as to ensure the code won't be in �nal versions.

Display unit id if closeups, toplines, etc, if debugging is on.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 244

5.2.17 Guidelines and Suggestions

Although as the interface builder, you are free to make it work in any way you like, there are a

number of basic things you should do. Some of these are general user interface principles, others

are speci�c to Xconq, usually based on experiences with the existing interfaces. Applying some of

these guidelines will require judicious balancing between consistency with the di�erent version of

Xconq and consistency with the system you're porting to.

[following items should be better organized, moved in with relevant sections]

Draw single selected unit in a stack larger.

Draw single selected occupant in UR corner next to transport, when at mags that show both

transport and occs.

There should always be some sort of "what's happening now" display so player doesn't wonder

about apparently dead machine.

Image tool should report which type of resource is generating a given image, so can �nd which

to hack on (report for selected image only).

Interfaces should ensure stability of display choices if random possibilities, so need to cache local

decisions about appearance of units if multiple images to choose from, choice of text messages, etc.

Rules of Interaction: 1. Player can get to any unit in any mode. 2. Any player can prevent

a turn from completing(/progressing?), unless a hard real limit is encountered. 3. All players see

each others' general move/activity state, modes, etc. 4. Players can "nudge" each other. 5. Real

time limits can be set for sides, turns, and games, both by players and by scenarios.

Player should be able to click on a desired unit or image, and e�ectively say "take this", either

grabs directly or else composes a task to approach and capture.

Unit closeups should be laid out individually for each type, too much variability to make a single

format reasonable.

Add option where game design can specify use or avoidance of masks with unit icons.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 245

Player could escape a loss by saving a game, then discarding save. Mplayers could register

suspicion when player saves then quits - "You're not trying to cheat, are you?" - but can't prevent

this.

All interfaces should be able to bring up an "Instructions" window that informs player(s) about

the current game, includes xrefs to all game design info. Restrict help to generic and interface info

only.

Graph display should graphing of various useful values, such as amounts of units and materials

over time, attitudes of sides, combat, etc. Maximal is timeline for all sides and units, usually too

elaborate but allow tracking movement for some "important" units. Note that move actions may

be recorded anyway.

Make specialized dialog for agreements, put name on top, then scrolling list of terms, then

signers, then random bits (public/secret, etc). Use for proposals also, so allow for "tentative"

signers, desired signers who have not looked at agreement. Be able to display truth of each term,

but need test to know when a side can know the truth of a term?

Interfaces should have a \wake up dummy" button that can be used by players who have �nished

their turn, to prod other players not yet done.

Commands that are irrelevant for a game ought to be grayed out in help displays, and error

messages should identify as completely invalid (or just not do anything, a la grayed Mac menu

shortcuts).

Should be able to drag out a route and have unit follow it (user input of a complete task

sequence).

Hack formatting so that variable-width fonts usually work reasonably.

Add xref buttons to various windows to go to other relevant windows and focus in.

The current turn or date should be displayed prominently and be visible somewhere by default.

Add some high-level verbs as commands ("assault Berlin", "bomb London until destroyed").

Don't draw outline boxes at mags that would let them get outside the hex.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 246

If dating view data, allow it to gray out rather than disappear entirely. Could even have a "fade

time" for unit images...

Even if display is textual, use red text (and other colors) to indicate dangerous conditions.

Next/prev unit controls should change map focus, even if screen una�ected.

In general, ability to "select" a unit implies ability to examine, but not control. Control implies

ability to select, however.

Use a builtin color matching a color name if possible, otherwise use the imc de�nition.

Connections may need to be drawn di�erently in each of the two hexes they involve, such as

straits connecting to a sea. (what is this supposed to mean?)

If cell cramped for space, show only one material type at a time, require redraw to show amounts

of a di�erent type.

Draw time remaining both digitally and as hourglass, for all time limits in e�ect.

Could tie map to follow a speci�ed unit (or to
ip there quickly a la SimAnt).

Have a separate message window from notices, allow broadcasting w/o speci�c msg command?

(a "talk" window)

Redraw hexes exposed when a unit with a legend moves. Truncate or move legend if would

overlap some other unit/legend.

Put limits on the number of windows of each type, set up so will reuse windows, except for ones

that are "staked down".

Fix border removal so inter-hex boundary pixels are cleaned up also.

Need a specialized window or display to check on current scores (showing actual situation vs

what's still needed). (Show both scorekeepers actually in force, as well as the others.) Side display

could also display scores relevant to that side.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 247

Every unit plan display should have a place to record notes and general info about the unit, add

a slot to units also. Use in scenarios.

Need a command for when a player can explicitly change the self-unit.

Players should be able to rename any named object. The interface should also provide a button

or control to run any namer that might be available to the unit.

Be able to select unit number display indep of unit name display, and feature name display

indep of unit names.

Don't draw things that xform to 0 pixel areas, only draw the most important things if 1-4 pixels

or so.

If time/e�ort to do action is > length of game, then interface can disable that action permanently.

Use moving bar or gray under black to indicate reserve/asleep units.

5.3 Networking

Xconq has been also been designed to allow for di�erent kinds of networking strategies.

The kernel/interface architecture can be exploited to build a true server/client Xconq, by build-

ing an \interface" that manages IPC connections and calling this the server, and then writing

separate interface programs that translate data at the other end of the IPC connection into some-

thing that a display could use. My previous attempt at this (ca 1989) was very slow and buggy,

though, so this is not necessarily an easy thing to write. The chief problem is in keeping the client's

view of thousands of interlinked objects (units, sides, cells, and so forth) consistent with the server.

Most existing server/client games work by either restricting the state to a handful of objects, or by

only handing the client display-prepared data rather than abstract data, or by reducing the update

interval to minutes or hours.

[When networking, all kernels must call with same values...]

5.4 Miscellany

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 248

5.4.1 Versioning Standards

In version 7.x.y, x should change only when some documented user-visible aspect of Xconq

changes, whether in the interface or kernel. In particular, any additions to GDL, such as a new

table or property, require a new x version. y is reserved for bug-�x releases, which can include the

implementation of features that were documented but not actually made to work.

5.5 Pitfalls

This chapter would not be complete without some discussion of the traps awaiting the unwary

hacker. The Absolute Number One Hazard in hacking Xconq is to introduce code that does not work

for all game designs. It is all too easy to assume that, for instance, unit speeds are always less than

20, or airbases can only be built by infantry, or that worlds are always randomly-generated. These

sorts of assumptions have caused no end of problems. Code should test preconditions, especially for

dynamically-allocated game-speci�ed objects, and it should be tested using the various test scripts

in the test directory.

The number two pitfall is to not account for all the possible interfaces. Not all interfaces have

a single \current unit" or map window, and some communicate with multiple players or over a

network connection.

You should not assume that your hack is generally valid until you have tested it against every-

thing in the library and test directories. The test directory contains scripts that will be useful for

this, at least to Unix hackers. See the README in that directory for more information.

Another pitfall is to be sloppy about performance. An algorithm that works �ne in a small

world with two sides and 50 units may be painfully slow in a large game. Or, the algorithm may

allocate too much working space and wind up exhausting memory (this has often happened). You

should familiarize yourself with the algorithms already used in Xconq, since they have already been

debugged and tuned, and many have been written as generically useful code (see the area-scanning

functions in world.c for instance).

If your new feature is expensive, then de�ne a global and compute its value only once, either at

the start of the game or when it becomes relevant. Such a global should be named any_<feature>.

Similarly, complicated tests on unit types or sides should be calculated once and cached in a

dynamically-allocated array.

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 249

5.6 Rationale and Future Directions

This is where I justify what I've done, and not done.

Please note that although Xconq has considerable power, its design was expressly limited to a

particular class of two-dimensional board-like strategy games, and that playability is emphasized

over generality. For instance, I avoided the temptation to include a general-purpose language, since

it opens up many di�cult issues and makes it much harder for game designers to produce a desired

game (after all, if game designers wanted to use a general-purpose programming language, they

could just write C code!). Similarly, full 3D, realtime maneuvering, continuous terrain, and other

such goodies must await the truly ultimate game system.

The real problem with a general-purpose language is that although everything is possible, noth-

ing is easy. Many \adventure game writing systems" have fallen into this trap; they end up being

poor reimplementations of standard programming languages, and the sole support for adventure

gaming amounts to a small program skeleton and a few library functions. It would have been easier

just to start with a pre-existing language and just write the skeleton and libraries!

Xconq, on the other hand, provides extensive optimized support for random game setup, large

numbers of units, game save/restore, computer opponents, and many other facets of a game. Game

designers don't have to deal with the subleties of fractal terrain synthesis, or the ordering of terrain

e�ects on units, or how to tell the computer opponents that airbases are sometimes good for

refueling but never any good for transportation, or the myriad of other details that are wired into

Xconq. In fact, a complete working game can be set up with less than a half-page of GDL.

Even so, the current Xconq design allows for several layers of extensibility, as was described

earlier in this chapter.

There are also several major areas in which Xconq could be improved.

Tables should be supplemented with general formulae, although such formulae will complicate

AIs' analyses considerably, since tables are much easier to scan. Formula-based game de�nition

would work much better with AIs that are coded speci�cally for the game and compiled in; this is

more-or-less possible now, but there is not yet a good way to keep AIs from being used in games

where they would be inappropriate (it might be amusing to have a panzer general AI attempting

to play Gettysburg, but the coding would have to be careful not to try to index nonexistent unit

types).

4 May 1995DRAFT d35 DRAFT d35

Chapter 5: Hacking XconqXconq 250

Currently everything is based on a single area of a single world. This could be extended to

multiple areas in the world, perhaps at di�erent scales, as well as to multiple worlds.

However, even with its limitations, Xconq has provided, and will continue to provide, many

years of enjoyable playing, designing, and hacking. Go to it!

4 May 1995DRAFT d35 DRAFT d35

Appendix A: GlossaryXconq 251

AppendixA Glossary

Some of the concepts below are only relevant to certain interfaces, but are su�ciently frequent

to warrant inclusion; they are identi�ed as interface-speci�c.

accident: A random event that damages or destroys a unit.

acp: See action points.

action: A single thing that a unit can do. Examples include movement to an adjacent cell,

detonation, and repair.

action points (acp): The basic number of actions available to a unit during the turn.

agreement: A treaty or deal made between players, consisting of a number of terms de�ning

each player's part in the agreeement.

AI: See Arti�cial Intelligence.

Arti�cial Intelligence (AI): A player that is run by code internal to Xconq.

altitude: the z-coordinate of a unit, relative to its cell's elevation.

area: A section of the world that you play on. An area may be a polygon, or a cylinder if it is

large enough to go all the way around the world.

attrition: A gradual loss of a unit's hp, usually due to a harmful environment.

backdrop: The set of activities that proceeds independently of units and sides.

border: A special type of terrain that occurs between two cells.

border slide: A special kind of unit move that traverses a border rather than crossing it.

cell: A single location in an area, typically a hex or square shape.

closeup: A part of an interface that displays detailed information about a side or unit.

4 May 1995DRAFT d35 DRAFT d35

Appendix A: GlossaryXconq 252

coating: A layer that temporarily modi�es terrain, such as snow.

combat experience points (cxp):

completeness points (cp): The degree to which a unit is ready to do things. Newly-created units

usually fall short of completeness.

completion: A type of action that brings a given unit closer to being complete.

connection: A special type of terrain that negates the e�ects of cell and border terrain between

two adjacent cells. Examples would be roads and canals.

construction: A general term referring to the combination of creation and completion actions

that result in a usable unit.

consumption: The process by which units and terrain use up materials.

country: The initial region of a side's units.

coverage: A set of numbers representing the quality of a side's vision at each point in the world.

cp: See completeness points.

cxp: See combat experience points.

creation: An action by which a unit creates another unit. Creation actions can specify that the

newly-created unit is to be at a given location or inside a given unit.

designer: A special kind of side/player that is permitted to examine and alter the entire state

of the game directly.

detonation: An action that results in hits on every unit near the detonation.

disband: An action that results in the orderly destruction of a unit.

doctrine: A set of
ags and parameters that individual units of a side use to help decide what

to do, in the absence of explicit orders from the player.

4 May 1995DRAFT d35 DRAFT d35

Appendix A: GlossaryXconq 253

elevation: The height of a cell above some arbitrary point.

emblem: An iconic image used by interfaces to display a side.

event: a historical occurrence.

feature: see geographical feature.

game design: The set of type de�nitions and rules of a game, usually composed from several

game modules.

Game Design Language (GDL): The language used to de�ne Xconq games.

game module: A group of game-related de�nitions and information, not necessarily a complete

game design.

geographical feature: A named region in the world.

goal: A state or situation that units and/or sides can plan to achieve.

grammar: A set of rules that de�ne how a name or phrase will be constructed from letters

and/or syllables.

hex: A cell in a world where each cell is adjacent to exactly six others.

history: The record of events in a game.

hit points (hp): The amount of damage that a unit can sustain before it dies or is otherwise

destroyed.

hp: See hit points.

image: A visual icon or pattern used by interfaces to display units and terrain.

image family: A collection of images, of various sizes, orientations, colors, etc, all of which

represent a single visual concept.

4 May 1995DRAFT d35 DRAFT d35

Appendix A: GlossaryXconq 254

independent unit: A unit that does not belong to any side.

interface: The software that manages interaction between a player and the kernel.

kernel: The part of Xconq that manages the action of the game itself.

list: A linear list of units or sides (interface).

map: A visual display of part or all of a world (interface).

material: A quantity of a material type.

material type: A type of mass stu�.

movement: A type of action in which a unit changes its location. The destination of movement

may be either a cell or another unit.

movement points (mp): The basic amount of mobility available to a unit during a turn.

mp: See movement points.

namer: An object that generates names using a naming method.

naming method: An algorithm for generating names.

occupant: A unit that is contained in another unit. See transport.

pattern: A special kind of image that can be repeated many times in a regular fashion. Usually

used to display terrain.

people: Special \material types" that are actually considered to represent individuals.

plan: The information that a unit uses to decide what to do next. Both human-run and AI-run

units have plans.

player: A participant in a game. Can be a human or a computer.

4 May 1995DRAFT d35 DRAFT d35

Appendix A: GlossaryXconq 255

production: The process by which units and terrain make materials appear.

property: An attribute or value associated with a type or object, such as a unit type's speed or

a side's name.

region: A set of cells in the world. It can be any size or shape.

save�le: A special game module that contains an exact replica of a game in progress.

scorekeeper: An object that manages (part of) the standings of players in a game, and also

handles recording of �nal scores.

self-unit: A unit that represents the whole side.

side: The representation of a single player within the game.

speed: The ratio of movement points to action points.

spying: A backdrop process where units collect information about units on other sides.

stack: A group of units at the same location, none of which are inside another.

supply: The materials being carried by a unit.

supply line: A path by which a unit can get supplies automatically from another unit.

synthesis method: An algorithm that can build part of the initial game setup, usually randomly.

table: A two-dimensional array of numbers that de�ne some interaction between pairs of types.

Tables may be indexed by unit types, material types, and terrain types, in various combinations.

task: A single element of a unit's plan. A task usually results in one or a few unit actions.

task agenda: A list of tasks that a unit plans to do.

tech level: An abstract number representing a side's ability to use and/or construct a type of

unit.

4 May 1995DRAFT d35 DRAFT d35

Appendix A: GlossaryXconq 256

terrain type: One of a set of possible terrains.

terrain subtype: The speci�c role played by a terrain type. Subtypes currently include open

terrain, borders, connections, and coatings.

tooling points (tp): A unit's amount of preparation towards the construction of a particular

unit type.

tp: See tooling points.

transfer: The process by which supplies/materials are moved from one unit or cell to another.

transport: A unit that may contain other units. See occupant.

turn: A single cycle of unit actions and backdrop operation.

unit: A single distinct object, like a playing piece.

unit type: One of a set of possible types for the units in a game.

vanish: The process whereby a unit is removed entirely from the game.

variant: A prede�ned option by which players can alter a game before starting it.

vision: The mechanism by which a side's units collect and report information about the world

and about other units.

world: The entire space within which units move around.

wreck: The process whereby an about-to-die unit changes into another type of unit instead of

dieing.

zone of control (zoc): A region around which a unit can a�ect the behavior of other units.

4 May 1995DRAFT d35 DRAFT d35

Appendix B: Summary of GDL SyntaxXconq 257

AppendixB Summary of GDL Syntax

Whitespace is never signi�cant, except to separate two symbols or within a string or escaped

symbols.

[describe rest of lexical stu�?]

form ::= module-form

| (include [if-needed] module-name [variant-set] *)

| (if test-form [symbol])

| (else [symbol])

| (end-if [symbol])

| world-form

| area-form

| side-form

| side-defaults-form

| independent-units-form

| doctrine-form

| player-form

| agreement-form

| unit-form

| unit-defaults-form

| scorekeeper-form

| exu-form

| evt-form

| battle-form

| unit-type-form

| terrain-type-form

| material-type-form

| namer-form

| table-form

| add-form

| (define symbol value)

| (set symbol value)

| (undefine symbol value)

| value

module-form ::= (game-module [module-name]

[game-module-property-binding] *)

module-name ::= string

game-module-property-binding ::= (game-module-property-name value)

game-module-property-name ::= title | blurb | picture-name | base-game

| instructions | notes | design-notes | version | program-version

| base-module | default-base-module

4 May 1995DRAFT d35 DRAFT d35

Appendix B: Summary of GDL SyntaxXconq 258

variant-definition ::=

([string] var-type [var-default] [var-range] [var-clause] *)

var-type ::= world-size | world-seen | see-all

| sequential | real-time | symbol

var-default ::= value

var-range ::= (value value)

var-clause ::= ([string] value [form] *)

variant-set ::= (var-type value)

world-form ::= (world [circumference] [world-property-binding] *)

world-property-binding ::= (world-property-name value)

world-property-name ::= circumference | axial-tilt

area-form ::= (area [width [height]] [area-restriction]

[area-property-binding] *)

area-restriction ::= (restrict width height x y)

area-property-binding ::= (area-property-name value)

| (terrain [layer-subform] * [string] *)

| (aux-terrain terrain-type [layer-subform] * [string] *)

| (features feature-list [layer-subform] * [string] *)

| (material material-type [layer-subform] * [string] *)

| (people-sides [layer-subform] * [string] *)

| (elevations [layer-subform] * [string] *)

| (temperatures [layer-subform] * [string] *)

| (winds [layer-subform] * [string] *)

| (clouds [layer-subform] * [string] *)

| (cloud-bottoms [layer-subform] * [string] *)

| (cloud-heights [layer-subform] * [string] *)

area-property-name ::= width | height | latitude | longitude | cell-width

layer-subform ::= (constant n)

| (subarea x y w h)

| (xform mul add)

| (by-bits)

| (by-char string)

| (by-name name-list)

4 May 1995DRAFT d35 DRAFT d35

Appendix B: Summary of GDL SyntaxXconq 259

side-form ::= (side [side-id] [side-property-binding] *)

side-defaults-form ::= (side-defaults [side-property-binding] *)

side-property-binding ::= (side-property-name value)

side-property-name ::= name | long-name | short-name | noun | plural-noun

| adjective | color-scheme | color | emblem-name | names-locked

| class | active | status | advantage | advantage-min | advantage-max

| controlled-by | trusts | trades | next-numbers | unit-namers

| feature-namers | tech | init-tech | terrain-view | unit-view

| unit-view-dates | turn-time-used | total-time-used | timeouts

| timeouts-used | finished-turn | willing-to-draw | respect-neutrality

| real-timeout | task-limit | doctrines | doctrines-locked

| self-unit | priority | scores | ui-data | ai-data | player

player-form ::= (player [player-id] [player-property-binding] *)

player-id ::= number

player-property-binding ::= (player-property-name value)

player-property-name ::= name | config-name | display-name | ai-type-name

| password | initial-advantage

agreement-form ::= (agreement [agreement-id]

[agreement-property-binding] *)

agreement-property-binding ::= (agreement-property-name value)

agreement-property-name ::= type-name | title | terms | drafters

| proposers | signers | willing-to-sign | known-to | enforcement

| state

unit-form ::= (unit [unit-id] [unit-property-binding] *)

unit-defaults-form ::= (unit-defaults [reset] [unit-property-binding] *)

unit-property-binding ::= (unit-property-name value)

unit-property-name ::= | z | s | # | n | nb | cp | hp | cxp | mo

| m | tp | in | opinions | x | act | plan

doctrine-form

exu-form

evt-form ::= (evt turn type observers [data] *)

4 May 1995DRAFT d35 DRAFT d35

Appendix B: Summary of GDL SyntaxXconq 260

table-form ::= (table table-name [table-clause] *)

table-clause ::= value | (type-or-types type-or-types value)

add-form ::= (add type-or-types property-name value)

| (add table table-name [table-clause] *)

type-or-types ::= type | ([type] *)

value ::= number

| symbol

| global-variable

| ([value] *)

| (operation-name [value] *)

operation-name ::= quote | list | append | remove

global-constant ::= true | false

global-variable ::=

| advantage-min | advantage-max | advantage-default

4 May 1995DRAFT d35 DRAFT d35

Appendix C: GNU GENERAL PUBLIC LICENSEXconq 261

AppendixC GNUGENERALPUBLIC LICENSE

Version 2, June 1991

Copyright
c

 1989, 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change

it. By contrast, the GNU General Public License is intended to guarantee your freedom to share

and change free software|to make sure the software is free for all its users. This General Public

License applies to most of the Free Software Foundation's software and to any other program whose

authors commit to using it. (Some other Free Software Foundation software is covered by the GNU

Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free software

(and charge for this service if you wish), that you receive source code or can get it if you want it,

that you can change the software or use pieces of it in new free programs; and that you know you

can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights

or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you

if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must

give the recipients all the rights that you have. You must make sure that they, too, receive or can

get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) o�er you this license

which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands

that there is no warranty for this free software. If the software is modi�ed by someone else and

4 May 1995DRAFT d35 DRAFT d35

Appendix C: GNU GENERAL PUBLIC LICENSEXconq 262

passed on, we want its recipients to know that what they have is not the original, so that any

problems introduced by others will not re
ect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the

danger that redistributors of a free program will individually obtain patent licenses, in e�ect making

the program proprietary. To prevent this, we have made it clear that any patent must be licensed

for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation follow.

TERMS ANDCONDITIONS FOR COPYING, DISTRIBUTION

ANDMODIFICATION

1. This License applies to any program or other work which contains a notice placed by the

copyright holder saying it may be distributed under the terms of this General Public License.

The \Program", below, refers to any such program or work, and a \work based on the Pro-

gram" means either the Program or any derivative work under copyright law: that is to say, a

work containing the Program or a portion of it, either verbatim or with modi�cations and/or

translated into another language. (Hereinafter, translation is included without limitation in

the term \modi�cation".) Each licensee is addressed as \you".

Activities other than copying, distribution and modi�cation are not covered by this License;

they are outside its scope. The act of running the Program is not restricted, and the output

from the Program is covered only if its contents constitute a work based on the Program

(independent of having been made by running the Program). Whether that is true depends

on what the Program does.

2. You may copy and distribute verbatim copies of the Program's source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each copy

an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this License and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option

o�er warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work

based on the Program, and copy and distribute such modi�cations or work under the terms of

Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modi�ed �les to carry prominent notices stating that you changed the

�les and the date of any change.

4 May 1995DRAFT d35 DRAFT d35

Appendix C: GNU GENERAL PUBLIC LICENSEXconq 263

b. You must cause any work that you distribute or publish, that in whole or in part contains

or is derived from the Program or any part thereof, to be licensed as a whole at no charge

to all third parties under the terms of this License.

c. If the modi�ed program normally reads commands interactively when run, you must cause

it, when started running for such interactive use in the most ordinary way, to print or

display an announcement including an appropriate copyright notice and a notice that

there is no warranty (or else, saying that you provide a warranty) and that users may

redistribute the program under these conditions, and telling the user how to view a copy

of this License. (Exception: if the Program itself is interactive but does not normally

print such an announcement, your work based on the Program is not required to print an

announcement.)

These requirements apply to the modi�ed work as a whole. If identi�able sections of that

work are not derived from the Program, and can be reasonably considered independent and

separate works in themselves, then this License, and its terms, do not apply to those sections

when you distribute them as separate works. But when you distribute the same sections as

part of a whole which is a work based on the Program, the distribution of the whole must be

on the terms of this License, whose permissions for other licensees extend to the entire whole,

and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written

entirely by you; rather, the intent is to exercise the right to control the distribution of derivative

or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program

(or with a work based on the Program) on a volume of a storage or distribution medium does

not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object

code or executable form under the terms of Sections 1 and 2 above provided that you also do

one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must

be distributed under the terms of Sections 1 and 2 above on a medium customarily used

for software interchange; or,

b. Accompany it with a written o�er, valid for at least three years, to give any third party, for

a charge no more than your cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be distributed under the terms

of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the o�er to distribute corresponding

source code. (This alternative is allowed only for noncommercial distribution and only if

you received the program in object code or executable form with such an o�er, in accord

with Subsection b above.)

4 May 1995DRAFT d35 DRAFT d35

Appendix C: GNU GENERAL PUBLIC LICENSEXconq 264

The source code for a work means the preferred form of the work for making modi�cations to

it. For an executable work, complete source code means all the source code for all modules

it contains, plus any associated interface de�nition �les, plus the scripts used to control com-

pilation and installation of the executable. However, as a special exception, the source code

distributed need not include anything that is normally distributed (in either source or binary

form) with the major components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy from a designated

place, then o�ering equivalent access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not compelled to copy the source

along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-

gram is void, and will automatically terminate your rights under this License. However, parties

who have received copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing

else grants you permission to modify or distribute the Program or its derivative works. These

actions are prohibited by law if you do not accept this License. Therefore, by modifying or

distributing the Program (or any work based on the Program), you indicate your acceptance

of this License to do so, and all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients' exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any other

reason (not limited to patent issues), conditions are imposed on you (whether by court order,

agreement or otherwise) that contradict the conditions of this License, they do not excuse you

from the conditions of this License. If you cannot distribute so as to satisfy simultaneously

your obligations under this License and any other pertinent obligations, then as a consequence

you may not distribute the Program at all. For example, if a patent license would not permit

royalty-free redistribution of the Program by all those who receive copies directly or indirectly

through you, then the only way you could satisfy both it and this License would be to refrain

entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,

the balance of the section is intended to apply and the section as a whole is intended to apply

in other circumstances.

4 May 1995DRAFT d35 DRAFT d35

Appendix C: GNU GENERAL PUBLIC LICENSEXconq 265

It is not the purpose of this section to induce you to infringe any patents or other property

right claims or to contest validity of any such claims; this section has the sole purpose of

protecting the integrity of the free software distribution system, which is implemented by

public license practices. Many people have made generous contributions to the wide range of

software distributed through that system in reliance on consistent application of that system;

it is up to the author/donor to decide if he or she is willing to distribute software through any

other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the

rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either by patents

or by copyrighted interfaces, the original copyright holder who places the Program under this

License may add an explicit geographical distribution limitation excluding those countries, so

that distribution is permitted only in or among countries not thus excluded. In such case, this

License incorporates the limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version,

but may di�er in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program speci�es a version

number of this License which applies to it and \any later version", you have the option of

following the terms and conditions either of that version or of any later version published

by the Free Software Foundation. If the Program does not specify a version number of this

License, you may choose any version ever published by the Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are di�erent, write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free Software Foundation; we

sometimes make exceptions for this. Our decision will be guided by the two goals of preserving

the free status of all derivatives of our free software and of promoting the sharing and reuse of

software generally.

NOWARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-

RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS

AND/OR OTHER PARTIES PROVIDE THE PROGRAM \AS IS" WITHOUTWARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-

MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-

4 May 1995DRAFT d35 DRAFT d35

Appendix C: GNU GENERAL PUBLIC LICENSEXconq 266

FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-

ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO

YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-

SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES

OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-

BILITY OF SUCH DAMAGES.

ENDOF TERMS ANDCONDITIONS

4 May 1995DRAFT d35 DRAFT d35

Appendix C: GNU GENERAL PUBLIC LICENSEXconq 267

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,

the best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of

each source �le to most e�ectively convey the exclusion of warranty; and each �le should have at

least the \copyright" line and a pointer to where the full notice is found.

one line to give the program's name and an idea of what it does.

Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type `show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type `show c'

for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the

General Public License. Of course, the commands you use may be called something other than `show

w' and `show c'; they could even be mouse-clicks or menu items|whatever suits your program.

4 May 1995DRAFT d35 DRAFT d35

Appendix C: GNU GENERAL PUBLIC LICENSEXconq 268

You should also get your employer (if you work as a programmer) or your school, if any, to sign

a \copyright disclaimer" for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program `Gnomovision'

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-

grams. If your program is a subroutine library, you may consider it more useful to permit linking

proprietary applications with the library. If this is what you want to do, use the GNU Library

General Public License instead of this License.

4 May 1995DRAFT d35 DRAFT d35

Appendix D: IndexXconq 269

AppendixD Index

#

. 146

/

/= . 154

=

= . 154

@

@ . 146

>

> . 154

>= . 154

<

< . 154

<= . 154

A

a . 148

aa . 148

accident-damage . 222

accident-hit-chance . 222

accident-vanish-chance . 222

accidents-in-terrain .. 221

acp . 148

acp-damage-effect.. 192

acp-for-retreat . 208

acp-max .. 191

acp-min .. 191

acp-night-effect .. 192

acp-occupant-effect . 192

acp-per-turn . 191

acp-per-turn-max .. 192

acp-per-turn-min .. 192

acp-season-effect.. 216

acp-to-add-terrain . 214

acp-to-attack .. 207

acp-to-be-fired-on . 208

acp-to-build . 201

acp-to-capture .. 211

acp-to-change-side . 205

acp-to-change-type . 206

acp-to-create .. 200

acp-to-defend .. 207

acp-to-detonate .. 212

acp-to-disband .. 205

acp-to-enter-unit .. 197

acp-to-fire . 208

acp-to-load . 204

acp-to-move . 193

acp-to-produce .. 204

acp-to-remove-terrain . 214

acp-to-repair .. 203

acp-to-research .. 198

acp-to-toolup .. 199

acp-to-transfer-part .. 206

acp-to-unload .. 204

acp0. 148

act . 148

action-done . 157

action-error . 157

action-messages .. 190

action-ok . 157

action-priority .. 193

active . 137

actual . 223

add . 124, 154

add-terrain . 214

adjacent-terrain-effect .. 169

adjective . 136

advantage . 138

advantage-default .. 144

advantage-max . 138, 144

advantage-min . 138, 144

after-action . 153

4 May 1995DRAFT d35 DRAFT d35

Appendix D: IndexXconq 270

after-event . 152

after-turn.. 152

agreement .. 151

ai-data .. 143

ai-type-name . 144

already-seen . 188

already-seen-independent.. 188

alt-blob-density .. 179

alt-blob-height . 179

alt-blob-size .. 179

alt-percentile-max . 179

alt-percentile-min . 179

alt-smoothing .. 179

alter-terrain .. 214

alter-terrain-range . 214

altitude-max . 195

altitude-min . 195

am . 148

and . 154

any . 190

appear . 148

append . 125

applies-to.. 153

area. 130

asleep . 150

assign-number .. 161

attack . 207

attack-range . 207

attack-range-min .. 207

attack-terrain-effect .. 209

attrition .. 221

attrition-in-terrain .. 221

aux-terrain . 133

available .. 160

avoid-bad-terrain.. 142

axial-tilt.. 130

B

base-consumption .. 218

base-game .. 126

base-module . 127

base-production . 218

battle . 157

before-turn . 152

blurb . 126

border . 168

build . 150, 201

build-range . 202

by-bits . 132

by-char . 132

by-name . 132

C

calendar .. 225

can-be-self . 162

can-enter-independent . 197

cannot-do . 157

cannot-leave-world . 157

capacity .. 171, 173

capitalize .. 190

capture . 150, 211

capture-chance .. 211

cell. 168

cell-is-occupied .. 150

cell-width .. 133

change-on-exhaustion-chance 219

change-side . 205

change-type . 206

char. 159

circumference .. 130

class . 137

cloud-bottoms .. 135

cloud-heights .. 135

clouds . 135

clouds-max .. 170

clouds-min .. 170

coating . 168

coating-depth-max .. 168

coating-depth-min .. 168

color . 137, 159, 224

cond. 154

config-name . 144

connection .. 168

constant .. 132

consumption-as-occupant .. 218

consumption-on-creation .. 201

4 May 1995DRAFT d35 DRAFT d35

Appendix D: IndexXconq 271

consumption-per-attack . 210

consumption-per-build .. 202

consumption-per-move .. 197

consumption-per-repair . 203

control-chance .. 163

control-chance-adjacent .. 163

control-chance-at.. 163

control-range .. 163

controlled-by .. 138

country-growth-chance .. 184

country-people-chance .. 185

country-radius-max . 185

country-radius-min . 183

country-separation-max . 183

country-separation-min . 183

country-takeover-chance .. 184

country-terrain-max . 183

country-terrain-min . 183

country-units-max.. 185

cp . 147

cp-on-creation .. 201

cp-per-build . 201

cp-per-self-build.. 202

cp-to-self-build .. 202

create-at .. 200

create-in .. 200

create-range . 200

cxp . 147

cxp-max .. 165

cxp-on-capture-effect .. 212

cxp-per-capture . 212

cxp-per-combat .. 211

D

damage . 209

damage-cxp-effect.. 210

day-length.. 215

default-base-module . 127

defend-terrain-effect .. 209

defensive .. 149

define . 124

description-format . 159

design-notes . 126

destination-full .. 157

destination-too-far . 157

detonate .. 212

detonate-on-approach-range . 214

detonate-on-capture . 213

detonate-on-death .. 213

detonate-on-hit .. 213

detonation-accident-chance . 214

detonation-damage-adjacent . 213

detonation-damage-at .. 213

detonation-terrain-damage-chance 213

detonation-terrain-range. 213

detonation-unit-range . 213

direct-control .. 163

disappear . 148

disband . 205

display-name . 144

do . 153

do-action . 150

doctrine .. 141

doctrines . 141

doctrines-locked .. 141

drafters .. 151

draw. 137

E

edge-terrain . 191

elapsed-real-time .. 227

elevation-at-max-range .. 209

elevation-max .. 170

elevation-min .. 169

elevations .. 133

else. 129

embed . 223

embed-at .. 224

emblem-name . 137

end . 154

end-if . 129

enforcement . 152

enter . 197

event-messages .. 190

ever-ask-side .. 142

evt . 155

4 May 1995DRAFT d35 DRAFT d35

Appendix D: IndexXconq 272

exploratory . 149

extensions.. 160

extra-turn-chance.. 226

exu . 155

eye-height.. 176

F

false . 122

favored-terrain . 184

feature-namers . 139, 187

feature-types .. 187

features .. 133

ferry-on-departure . 198

ferry-on-entry .. 198

finished-turn .. 141

fire-at .. 208

fire-at-too-far . 157

fire-at-too-near .. 157

fire-into .. 208

fire-into-outside-world .. 157

fire-into-too-far.. 157

fire-into-too-near . 157

formation .. 151

free-acp .. 192

free-mp .. 195

G

game-ended.. 155

game-module . 126

game-restarted .. 155

game-saved.. 155

game-started . 155

generic-name . 158

goal. 149

grammar .. 189

grid-color.. 225

growth-stop-chance . 185

H

has-material-type.. 150

has-opinions . 167

has-unit-type .. 150

has-unit-type-near . 150

height . 130

help. 160

hit-at-max-range-effect .. 209

hit-by . 210

hit-chance .. 209

hit-cxp-effect .. 209

hit-falloff-range .. 209

hit-position . 150

hit-unit .. 150

hp . 147

hp-max . 164

hp-min . 210

hp-per-detonation .. 212

hp-per-disband .. 205

hp-per-repair .. 203

hp-per-starve .. 218

hp-recovery . 165

hp-to-garrison .. 212

hp-to-repair . 203

I

if . 129, 154

image-name .. 159

imf . 223

in . 147

in-length . 220

include . 129

independent-capture-chance . 211

independent-density . 185

independent-growth-chance . 184

independent-near-start .. 183

independent-people-chance . 186

independent-takeover-chance 185

independent-units .. 143

init-tech . 140

initial . 153

initial-advantage .. 144

initial-date . 226

initial-day-part .. 216

initial-seen-radius . 188

initial-year-part .. 216

instructions . 126

insufficient-acp .. 157

4 May 1995DRAFT d35 DRAFT d35

Appendix D: IndexXconq 273

insufficient-material .. 157

insufficient-mp . 157

J

junky . 189

K

keep-formation .. 150

known-to .. 151, 153

L

last-side-wins .. 154

last-turn .. 226

latitude .. 131

liquid . 169

list. 125

load-max .. 205

locked . 142

log-ended .. 155

log-started . 155

long-name .. 136, 158

longitude .. 131

lose . 138, 154

lost-game .. 149

M

m . 147

m* . 170

make-countries .. 182

make-earthlike-terrain . 181

make-fractal-percentile-terrain.. 179

make-independent-units . 185

make-initial-materials . 186

make-maze-terrain.. 180

make-random-date .. 187

make-random-terrain . 181

make-rivers . 181

make-roads.. 182

mask. 224

material .. 133

material-per-production .. 204

material-to-act . 192

material-to-build.. 202

material-to-change-type .. 207

material-to-create . 201

material-to-fight .. 210

material-to-move .. 196

material-to-produce . 204

material-to-repair . 203

material-type .. 170

maze-passage-density .. 180

maze-passage-occurrence .. 180

maze-room-density .. 180

maze-room-occurrence .. 180

messages .. 153

mo . 147

mono. 224

move. 193

move-dir .. 150

move-range .. 194

move-to . 150

mp-to-enter-terrain . 194

mp-to-enter-unit .. 197

mp-to-enter-zoc .. 196

mp-to-leave-terrain . 194

mp-to-leave-unit .. 197

mp-to-leave-world .. 195

mp-to-leave-zoc .. 196

mp-to-traverse .. 194

mp-to-traverse-zoc . 196

N

n . 146

name . 136, 144, 158

name-geographical-features . 186

name-internal .. 227

name-units-randomly . 187

namer . 161, 189

names-locked . 137

nb . 147

next-numbers . 139

no-goal . 149

no-x. 169

non-material . 170

non-terrain . 167

non-unit .. 161

4 May 1995DRAFT d35 DRAFT d35

Appendix D: IndexXconq 274

none . 149, 226

not . 154

notes . 126, 160

noun. 136

O

occupant-base-production.. 218

occupant-can-construct . 172

occupant-can-have-occupants 172

occupant-combat . 172

occupant-escape-chance . 212

occupant-max . 172

occupant-total-max . 172

occupant-vision . 172

occupy . 150

occurrence.. 181

offensive .. 149

opinions .. 147

or . 154, 190

out-length.. 220

over-all .. 198

over-border . 198

over-nothing . 198

over-own .. 198

overrun .. 207

overrun-failed .. 157

P

palette .. 224

parts-max .. 164

passive .. 149

password .. 144

people . 171

people-consumption . 219

people-max.. 171

people-production.. 219

people-see-chance.. 175

people-sides . 133

people-surrender-chance .. 174

people-surrender-effect .. 174

pickup . 150

picture-name . 126

pixel-size.. 224

plan. 149

player . 143

player-sides-locked . 143

plural-noun . 136

point-value . 167

positions-known .. 150

possible-sides .. 162

print . 227

priority .. 142

produce . 204

productivity . 218

productivity-max .. 218

productivity-min .. 218

program-version .. 127

proposers . 151

protection .. 210

Q

quote . 125

R

random . 149, 189

random-events .. 221

random-state . 223

range . 209

range-min . 209

real-time . 128

real-time-for-game . 226

real-time-per-side . 227

real-time-per-turn . 227

real-timeout . 141

rearm-at .. 142

recycleable-material .. 206

reject . 190

remove . 125

remove-terrain .. 214

repair . 150, 203

repair-at . 142

research .. 198

reserve . 150

reset . 146

respect-neutrality . 141

restrict .. 130

4 May 1995DRAFT d35 DRAFT d35

Appendix D: IndexXconq 275

resupply .. 150

resupply-at . 142

retreat-chance .. 211

revolt-chance .. 222

river-chance . 181

river-sink-terrain . 181

river-x .. 169

road-chance . 182

road-into-chance .. 182

road-x . 169

row-bytes .. 224

S

s . 146

scorefile-name .. 155

scorekeeper . 152

scores . 143

scuttle-chance .. 211

see-all . 128, 174

see-always.. 175

see-chance.. 175

see-chance-adjacent . 175

see-chance-at .. 175

see-occupants .. 175

see-terrain-always . 175

see-weather-always . 176

self-changeable . 163

self-required .. 162

self-resurrects . 163

self-unit .. 142

sentry . 150

sequential.. 128

set . 125

short-name . 136, 158

side. 135

side-defaults .. 135

side-joined . 155

side-library . 188

side-lost .. 155

side-withdrew .. 155

side-won .. 156

sides-max .. 135

sides-min .. 135

signers . 151

speed . 193

speed-damage-effect . 193

speed-max . 194

speed-min . 194

speed-occupant-effect . 194

speed-wind-angle-effect .. 194

speed-wind-effect .. 194

spot-action . 175

spy-chance .. 177

spy-quality . 177

spy-range . 177

stack-order . 173

stack-protection .. 210

start-with .. 183

state . 152

status . 137

stop. 154

subarea . 132

subtype . 168

subtype-x . 169

sum . 154

supply-on-completion .. 202

supply-on-creation . 201

supply-per-disband . 206

surrender-chance .. 222

surrender-chance-per-attack 208

surrender-range .. 222

synthesis-methods .. 178

T

t* . 167

table . 123

task-limit .. 141

tasks . 150

tech. 140

tech-crossover .. 166

tech-from-ownership . 166

tech-leakage . 167

tech-max .. 166

tech-per-research .. 198

tech-per-turn-max .. 199

tech-to-build .. 166

4 May 1995DRAFT d35 DRAFT d35

Appendix D: IndexXconq 276

tech-to-own . 166

tech-to-see . 166

tech-to-use . 166

temperature-average . 215

temperature-floor.. 134

temperature-floor-elevation 134

temperature-max . 170

temperature-min . 170

temperature-moderation-range 216

temperature-protection . 217

temperature-variability .. 215

temperature-year-cycle . 216

temperatures . 134

terms . 151

terrain .. 132

terrain-capacity-x . 173

terrain-consumption . 219

terrain-damaged-type .. 213

terrain-exhaustion-type .. 219

terrain-initial-supply . 186

terrain-production . 219

terrain-seen . 188

terrain-storage-x.. 174

terrain-type . 167

terrain-view . 140

text. 190

thickness .. 176

tile. 223

timeouts .. 140

timeouts-used .. 141

title . 126, 151, 152

too-far .. 157

too-near .. 157

toolup . 199

total-time-used . 140

tp . 147

tp-attrition . 200

tp-crossover . 200

tp-max . 200

tp-per-toolup .. 199

tp-to-build . 199

trades . 139

transfer .. 204

transfer-part .. 206

trigger . 153

triggered . 153

true. 122

trusts . 138

turn. 226

turn-time-used .. 140

type-in-game-max .. 164

type-name . 151

type-per-side-max .. 164

U

u* . 161

ui-data . 143

undefine .. 125

unit. 145

unit-acquired .. 156

unit-assaulted .. 156

unit-capacity-x .. 172

unit-captured .. 156

unit-completed .. 156

unit-created . 156

unit-damaged . 156

unit-defaults .. 146

unit-disbanded .. 156

unit-garrisoned .. 156

unit-growth-chance . 184

unit-initial-supply . 186

unit-killed . 156

unit-left-world .. 156

unit-moved .. 156

unit-name-changed .. 156

unit-namers . 139

unit-size-as-occupant . 172

unit-size-in-terrain .. 173

unit-started-with .. 156

unit-starved . 156

unit-storage-x .. 174

unit-takeover-chance .. 184

unit-type . 161

unit-type-changed .. 156

unit-type-name . 145

unit-vanished .. 156

4 May 1995DRAFT d35 DRAFT d35

Appendix D: IndexXconq 277

unit-view .. 140

unit-view-dates . 140

unit-wrecked . 156

units-in-game-max.. 163

units-per-side-max . 164

units-revolt . 222

units-surrender . 222

unload-max.. 204

unseen-char . 225

unseen-color . 225

unseen-image-name.. 225

use-side-priority.. 192

usual . 226

V

valley-x .. 169

vanishes-on . 173

variants .. 128

version .. 127

vicinity-is-held .. 150

vicinity-is-known.. 150

visibility.. 176

vision-bend . 176

vision-night-effect . 176

vision-range . 175

W

wait. 151

wet-blob-density .. 179

wet-blob-height . 179

wet-blob-size .. 179

wet-percentile-max . 180

wet-percentile-min . 179

wet-smoothing .. 179

when. 152

width . 130

willing-to-draw . 141

willing-to-sign . 151

win . 137, 154

wind-force-average . 215

wind-force-max .. 170

wind-force-min .. 170

wind-force-variability .. 215

wind-mix-range .. 215

wind-variability .. 215

winds . 134

withdraw-chance-per-attack . 208

won-game .. 149

world . 130

world-is-known .. 149

world-seen .. 128

world-size .. 128

wrecked-type . 165

wrecks-on . 173

X

x . 148

xform . 132

Y

year-length . 215

Z

z . 146

zoc-from-terrain-effect .. 196

zoc-into-terrain .. 196

zoc-range . 196

zz-b. 227

zz-basic-capture-worth .. 228

zz-basic-hit-worth . 228

zz-basic-transport-worth. 228

zz-bb . 227

zz-bw . 227

zz-c. 227

zz-cc . 227

zz-cm . 227

zz-fr . 227

zz-transport . 227

4 May 1995DRAFT d35 DRAFT d35

Appendix D: IndexXconq 278

4 May 1995DRAFT d35 DRAFT d35

Xconq i

Table of Contents

1 Xconq, the Penultimate Strategy Game 1

1.1 About This Manual . 1

1.2 Compatibility . 2

1.3 Where to Get Game Designs . 2

1.4 For More Information . 2

1.5 Acknowledgments . 3

2 Playing Xconq . 5

2.1 Setting Up A Game . 5

2.2 Starting Play . 7

2.3 Worlds and Areas . 7

2.4 Units . 9

2.5 Materials . 11

2.6 Sides . 11

2.6.1 Interaction Between Sides . 11

2.6.2 Agreements . 12

2.6.3 Trade . 13

2.6.4 Tech Levels . 13

2.6.5 Side Classes . 14

2.6.6 Self-Units . 14

2.7 Moving the Units . 15

2.7.1 Turn Setup. 15

2.7.2 Types of Actions . 15

2.7.3 Movement . 17

2.7.4 Combat . 17

2.7.5 Research . 18

2.7.6 Construction . 19

2.7.7 Repair . 20

2.7.8 Disbanding . 20

2.7.9 Transferring Parts . 20

2.7.10 Changing Side . 20

2.7.11 Changing Type . 21

2.7.12 Producing Materials . 21

2.7.13 Transferring Materials . 21

2.7.14 Changing the Terrain . 22

2.8 Automation of Units and Sides . 22

2.8.1 Doctrine . 23

4 May 1995DRAFT d35 DRAFT d35

Xconq ii

2.8.2 Plans . 23

2.8.3 Tasks . 23

2.8.4 Time Limits . 24

2.9 Standard Keyboard Commands . 24

2.10 Environmental Conditions . 28

2.11 Economy . 29

2.11.1 Consumption . 29

2.11.2 Movement of Materials . 29

2.12 Random Events . 30

2.12.1 Accidents . 30

2.12.2 Attrition . 30

2.12.3 Revolt . 30

2.12.4 Surrender . 30

2.13 Scoring . 30

2.13.1 \Last Side Wins" . 31

2.13.2 Occupation . 32

2.13.3 Unit Counts/Sums . 32

2.14 Advanced Play . 32

2.14.1 Mixing Game Modules . 32

2.14.2 Personalizing Your Side . 32

2.15 Playing Hints . 33

2.15.1 Alliances . 33

2.15.2 Advantage . 33

2.16 Cheating . 34

2.17 Technical Details . 34

2.18 Introduction to X11 Xconq . 34

2.18.1 Installing . 34

2.18.2 Resources . 35

2.19 Playing X11 Xconq . 35

2.19.1 Starting a New Game . 35

2.19.1.1 Command Options . 35

2.19.2 Maps . 35

2.19.2.1 Scrolling . 36

2.19.2.2 View Control Popup . 36

2.19.3 Play . 36

2.19.3.1 Using the Mouse - er - Pointer 37

2.19.3.2 Using the Keyboard . 37

2.20 Designing with X11 Xconq . 37

2.20.1 Xshowimf . 38

2.21 Introduction to Mac Xconq . 38

2.21.1 Installing . 39

2.21.2 Playing an Introductory Game. 39

2.22 Playing Mac Xconq . 40

4 May 1995DRAFT d35 DRAFT d35

Xconq iii

2.22.1 Starting a Game . 40

2.22.1.1 Loading a Game . 41

2.22.1.2 Variants . 41

2.22.1.3 Player Setup . 42

2.22.1.4 Final Setup . 42

2.22.2 Playing a Game . 43

2.22.3 Menus . 44

2.22.3.1 File Menu . 44

2.22.3.2 Edit Menu . 45

2.22.3.3 Find Menu . 46

2.22.3.4 Play Menu . 46

2.22.3.5 Side Menu . 47

2.22.3.6 Windows Menu . 47

2.22.3.7 View Menu . 47

2.22.4 Windows. 48

2.22.4.1 Map Windows . 48

2.22.4.2 Game Window . 48

2.22.4.3 List Windows . 49

2.22.4.4 Unit Closeup Windows . 49

2.22.4.5 Construction Window . 49

2.22.4.6 Instructions Window . 49

2.22.4.7 Help Window . 50

2.22.5 Keyboard Commands . 50

2.23 Designing with Mac Xconq. 50

2.23.1 Using the Palette . 50

2.23.1.1 Painting Terrain . 50

2.23.1.2 Creating Units . 51

2.23.1.3 Painting People . 51

2.23.1.4 Painting Material . 51

2.23.1.5 Creating Named Features . 51

2.23.1.6 Painting Elevations . 51

2.23.1.7 Painting Temperatures . 51

2.23.1.8 Painting Winds . 52

2.23.1.9 Painting Clouds . 52

2.23.2 Beyond the Designer Palette. 52

2.23.3 Images . 52

2.23.4 IMFApp . 53

2.23.5 Sounds . 54

2.24 Troubleshooting Mac Xconq . 54

2.25 Introduction to Curses Xconq . 55

2.25.1 Installing . 56

2.26 Playing Curses Xconq . 56

2.27 Designing with Curses Xconq . 56

4 May 1995DRAFT d35 DRAFT d35

Xconq iv

3 Designing Games with Xconq . 57

3.1 A Tutorial Example . 58

3.1.1 Basic De�nitions . 58

3.1.2 Adding Movement . 59

3.1.3 Buildings and Rubble Piles . 60

3.1.4 Human Units . 62

3.1.5 The Scenario . 64

3.2 Types . 66

3.2.1 Unit Types . 66

3.2.2 Terrain Types . 67

3.2.3 Material Types . 68

3.2.4 Static Relationships Between Types . 68

3.2.5 Stacking . 68

3.2.6 Occupants and Transports. 69

3.2.7 Hints on Types . 70

3.3 Setting up a Game . 70

3.4 Designing the World . 71

3.4.1 World Shape and Size . 71

3.4.2 World Terrain . 72

3.4.3 Synthesizing World Terrain . 72

3.4.4 Rivers . 74

3.4.5 Roads . 74

3.4.6 Independent Units . 74

3.5 Altitudes and Elevations . 75

3.6 Designing the Sides . 75

3.6.1 Prede�ned Sides . 76

3.6.2 Side Library. 76

3.6.3 Limits on Sides . 77

3.6.4 Hints on Sides . 78

3.7 Designing the Units . 78

3.7.1 Prede�ned Units. 78

3.7.2 Making Countries. 79

3.8 Setup Miscellany . 81

3.8.1 Technology . 82

3.8.2 Creating Self-Units . 82

3.9 Units and Actions . 83

3.10 Movement of Units . 84

3.10.1 Unit Speed . 84

3.10.2 Movement Costs . 84

3.10.3 Entering Transports . 85

3.10.4 Border Slides . 85

3.10.5 Leaving the Area . 85

4 May 1995DRAFT d35 DRAFT d35

Xconq v

3.10.6 Free Moves . 86

3.10.7 Zone of Control . 86

3.11 Unit Construction . 86

3.11.1 Researching . 86

3.11.2 Tooling Up . 87

3.11.3 Creation . 87

3.11.4 Completion . 87

3.11.5 Repair . 88

3.12 Combat Actions. 89

3.12.1 Multi-Round Battles . 90

3.12.2 Capture . 91

3.12.3 Detonation . 91

3.13 Unit Manipulation . 92

3.13.1 Transferring Unit Parts . 92

3.13.2 Changing Side . 93

3.13.3 Changing Type . 93

3.13.4 Disbanding. 93

3.14 Material Manipulation . 94

3.15 Terrain Manipulation . 94

3.16 Vision . 95

3.16.1 Seeing All . 95

3.16.2 Coverage . 95

3.16.3 Initial View . 96

3.16.4 Vision Range . 96

3.17 Backdrop Weather . 96

3.18 Backdrop Economy . 97

3.18.1 Creating Materials . 97

3.18.2 Movement of Materials . 97

3.18.3 Consuming Materials . 97

3.19 Random Events . 97

3.19.1 Accidents . 98

3.19.2 Attrition . 98

3.19.3 Revolts . 99

3.19.4 Surrenders . 99

3.20 Designing the Interface . 99

3.21 Designing Text . 99

3.21.1 Describing Objects . 100

3.21.2 Describing Events . 100

3.21.3 Generating Names . 100

3.21.4 Grammar Examples . 100

3.22 Designing the Graphics . 102

3.22.1 Image Format . 104

3.22.2 Image Design Hints . 104

4 May 1995DRAFT d35 DRAFT d35

Xconq vi

3.23 Game Module Organization . 104

3.24 Building New Games . 105

3.24.1 Building Scenarios . 106

3.24.2 Designer Mode . 106

3.24.3 Saving Scenarios. 107

3.24.4 Conversion from Xconq 5 . 107

3.24.5 Preparing a Game for Use . 109

3.24.6 Installing Scenarios . 109

3.24.7 Safety . 109

3.24.8 Balance and Playtesting . 110

3.24.9 Complexity . 110

3.24.10 Combinations . 111

3.25 Debugging . 111

3.26 Problems and Solutions . 112

3.26.1 Limiting Unit Quantities . 112

3.26.2 Handicapping . 113

3.26.3 Buying the Initial Setup . 113

3.26.4 Leaders . 114

3.26.5 Navigable Rivers . 114

3.26.6 What Ranges for Values? . 115

3.26.7 Fatigue . 116

3.26.8 Brainless Units and Scorekeeping . 116

3.26.9 Days and Years . 117

3.26.10 Xconq 5.x Setproduct . 117

3.27 Optimization . 117

3.28 Miscellaneous Tricks and Techniques . 118

4 Reference Manual . 121

4.1 Language Syntax . 121

4.1.1 Lexical Elements . 121

4.1.2 Conventions Used . 122

4.1.3 Forms and Evaluation. 123

4.1.4 Tables . 123

4.1.5 Modifying Objects . 124

4.1.6 Symbols . 124

4.1.7 Lists . 125

4.2 Game Modules . 125

4.2.1 Variants . 128

4.2.2 Including Other Modules . 129

4.2.3 Conditional Loading . 129

4.3 The World . 130

4.3.1 Layers . 131

4 May 1995DRAFT d35 DRAFT d35

Xconq vii

4.3.2 Distances and Elevations . 133

4.3.3 Temperatures . 134

4.3.4 Winds . 134

4.3.5 Clouds . 134

4.4 Sides . 135

4.4.1 Name and Related Properties. 136

4.4.2 Side Class . 137

4.4.3 Status in Game. 137

4.4.4 Side Relationships . 138

4.4.5 Numbering Units . 139

4.4.6 Side-Speci�c Namers . 139

4.4.7 Tech Levels . 139

4.4.8 Views. 140

4.4.9 Interaction . 140

4.4.10 Doctrine . 141

4.4.11 Other. 142

4.5 Players . 143

4.5.1 Rules of Side Con�guration. 145

4.6 Units . 145

4.6.1 Unit Properties . 146

4.6.2 Unit Action State . 148

4.6.3 Unit Plan . 149

4.7 Agreements . 151

4.8 Scorekeepers . 152

4.8.1 Bodies . 153

4.8.2 Scorekeeper Functions . 154

4.8.3 Score�le . 155

4.9 The History . 155

4.10 Battle States . 157

4.11 Types in General . 158

4.11.1 Naming . 158

4.11.2 Imaging . 159

4.11.3 Documentation . 159

4.11.4 Availability . 160

4.11.5 Type Extension . 160

4.12 Unit Types . 161

4.12.1 Unit Naming . 161

4.12.2 Class-Restricted Unit Types . 162

4.12.3 Self-Units . 162

4.12.4 Limiting Unit Quantities . 163

4.12.5 Hit Points . 164

4.12.6 Experience . 165

4.12.7 Tech Levels . 165

4 May 1995DRAFT d35 DRAFT d35

Xconq viii

4.12.8 Opinions . 167

4.12.9 Point Value . 167

4.13 Terrain Types . 167

4.13.1 Terrain Subtypes . 168

4.13.2 Terrain Compatibility . 169

4.13.3 Other Terrain Properties . 169

4.14 Material Types . 170

4.14.1 People . 171

4.15 Static Relationships Between Types . 171

4.15.1 Occupants and Transports . 171

4.15.2 Units and Terrain . 173

4.15.3 Units and Materials . 174

4.15.4 Terrain and Materials . 174

4.16 Vision . 174

4.16.1 Weather Vision . 176

4.16.2 Line of Sight . 176

4.16.3 Spying . 176

4.17 Game Initialization and Naming . 177

4.18 The Synthesis Method List . 178

4.18.1 Fractal World . 179

4.18.2 Maze World . 180

4.18.3 Random World . 180

4.18.4 Earthlike World . 181

4.18.5 River Generation . 181

4.18.6 Road Generation . 182

4.18.7 Making Countries . 182

4.18.8 Making Independent Units . 185

4.18.9 Initial Supply . 186

4.18.10 Naming Geographical Features . 186

4.18.11 Naming Units . 187

4.18.12 Making a Random Date . 187

4.19 Setup Postprocessing . 187

4.19.1 Initial View . 187

4.20 Naming and Text Generation . 188

4.20.1 Naming Sides . 188

4.20.2 Namers . 189

4.20.3 Naming Methods . 189

4.21 Other Initialization Controls . 191

4.22 Actions in General . 191

4.22.1 Action Ordering . 192

4.22.2 Movement . 193

4.22.3 Entering and Leaving Transports . 197

4.22.4 Research . 198

4 May 1995DRAFT d35 DRAFT d35

Xconq ix

4.22.5 Tooling Up. 199

4.22.6 Creating a Unit . 200

4.22.7 Building a Unit . 201

4.22.8 Repair . 203

4.22.9 Producing Materials . 204

4.22.10 Transferring Materials . 204

4.22.11 Changing Sides . 205

4.22.12 Disbanding . 205

4.22.13 Transferring Parts . 206

4.22.14 Changing Type . 206

4.22.15 Combat. 207

4.22.16 Capture . 211

4.22.17 Detonation . 212

4.22.18 Altering Terrain . 214

4.23 Environmental Computation . 215

4.23.1 Random Parameters . 215

4.23.2 Season Parameters. 215

4.23.3 Varying Activity with the Season . 216

4.23.4 Varying Temperature with the Season 216

4.23.5 Weather Parameters . 216

4.24 Environmental E�ects . 217

4.24.1 Coating E�ects . 217

4.24.2 E�ects of Temperature on Units . 217

4.25 Economy . 217

4.25.1 Unit Production and Consumption 218

4.25.2 Terrain Production and Consumption 219

4.25.3 Supply Lines . 219

4.25.4 Trade . 220

4.25.5 Taxation . 220

4.25.6 Material Conversion . 221

4.26 Random Events . 221

4.26.1 Terrain Attrition . 221

4.26.2 Terrain Accident . 221

4.26.3 Revolt . 222

4.26.4 Surrender . 222

4.27 The Random State . 223

4.28 Images and Image Families . 223

4.29 Default Display Style . 225

4.30 Dates and Time . 225

4.30.1 Real Time . 226

4.31 Miscellany . 227

4.31.1 Debugging . 227

4.31.2 Internal AI Data . 227

4 May 1995DRAFT d35 DRAFT d35

Xconq x

5 Hacking Xconq . 229

5.1 Kernel . 229

5.1.1 Con�guration Options . 230

5.1.2 Porting the Kernel . 230

5.1.3 Writing New Synthesis Methods . 230

5.1.4 Writing New Namers . 231

5.1.5 Writing New AIs . 231

5.1.6 Extending GDL . 232

5.2 Interface. 233

5.2.1 Main Program . 234

5.2.2 Startup Options . 235

5.2.3 Progress Indication . 235

5.2.4 Feedback and Control . 236

5.2.5 Commands . 236

5.2.6 Error Handling . 237

5.2.7 Textual Displays . 238

5.2.8 Display Update . 238

5.2.9 Types of Windows and Panels . 239

5.2.10 Imaging . 240

5.2.11 Animation . 241

5.2.12 Game Designer's Tools . 242

5.2.13 Porting and Multiple Interfaces . 243

5.2.14 Useful Displays . 243

5.2.15 Useful Options . 243

5.2.16 Debugging Aids . 243

5.2.17 Guidelines and Suggestions . 244

5.3 Networking . 247

5.4 Miscellany . 247

5.4.1 Versioning Standards . 248

5.5 Pitfalls . 248

5.6 Rationale and Future Directions . 249

Appendix A Glossary . 251

Appendix B Summary of GDL Syntax 257

Appendix C GNU GENERAL PUBLIC LICENSE

. 261

Preamble . 261

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . 262

How to Apply These Terms to Your New Programs 267

4 May 1995DRAFT d35 DRAFT d35

Xconq xi

Appendix D Index . 269

4 May 1995DRAFT d35 DRAFT d35

Xconq xii

4 May 1995DRAFT d35 DRAFT d35

